

APPLICATION OF INTEGRALS Class 12th

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

$$\begin{array}{c} \Rightarrow x(x-6) = 0 \\ x = 0 \ and \ x = 6 \\ y = x^2 - 2x \\ \Rightarrow x^2 - 2x = y \\ \Rightarrow (x-1)^2 - 1 = y \\ \Rightarrow (x-1)^2 = (y+1) \\ () \ shifting parabola \\ () \ vertex (1,-1) \\ () \ open towards + ve y-axis \\ intersection point of this parabola with $x-axis$ $(y=0)$ Put $y=0$ in $y=x^2-2x$ $\Rightarrow x^2-2x=0$ $\Rightarrow x(x-2)=0$ $x=0$ and $x=2$ Required $area = \int_0^4 [(6x-x^2)-(x^2-2x)] \, dx \\ = \int_0^4 (8x-2x^2) \, dx \\ = \left[4x^2-\frac{2x^3}{3}\right]_0^4 \\ = \left[64-\frac{128}{3}\right]-[0]$ Required $=\frac{64}{3}$ sq. units. ans.
$$\begin{array}{c} \textbf{Q.3} \\ \textbf{Sol.3} \end{array} \quad \begin{array}{c} \textbf{Find the area bounded by the triangle whose vertices are } A(2,0), B(4,5), \& C(6,3). \\ \textbf{Sol.3} \\ \textbf{Sol.3} \end{array} \quad \begin{array}{c} \textbf{Vertices are } A(2,0) \otimes B(4,5), C(6,3) \\ \textbf{Equation of side } AB \ (two point form) \\ y-0=\frac{5-0}{6-4}(x-2) \\ y=\frac{5x-10}{2} \\ \textbf{equation of side } AB \ (two point form) \\ y-0=\frac{5-0}{6-4}(x-2) \\ y=\frac{3}{4}(x-2) \\ \textbf{Required } area = \int_2^4 \left(\frac{5x-10}{2}\right) - \left(\frac{3x-6}{4}\right) \, dx + \int_1^6 (-x+9) - \left(\frac{3x-6}{4}\right) \, dx \\ = \frac{1}{4} \int_1^4 (10x-20-3x+6) \, dx + \frac{1}{4} \int_1^6 (-4x+36-3x+6) \, dx \\ = \frac{1}{4} \int_1^6 (7x-14) \, dx + \frac{1}{4} \int_1^6 (-7x+42) \, dx \\ = \frac{1}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{1}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{1}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{1}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \, dx \\ = \frac{7}{4} \int_1^4 (x-2) \, dx + \frac{7}{4} \int_1^4 (-x+4) \,$$$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	Stadies roudy.com
	$=\frac{7}{2}+\frac{7}{2}$
	$=$ $\overset{2}{7}$
	\therefore Required area = 7 sq.units ans.
Q.4)	Find the area bounded by the lines $2x + y = 4$, $3x - 2y = 6$ and $x - 3y + 5 = 0$.
Sol.4)	Given,
	2x + y = 4(1)
	3x - 2y = 6(2)
	x-3y = -5(3)
	Solving (1) & (2) Solving (2) & (3) Solving (1) & (3)
	6x + 3y = 12 3x - 2y = 6 2x + y = 4
	6x - 4y = 12 $3x - 9y = -15$ $2x - 6y = -10$
	$\begin{vmatrix} y - 0 & y - 3 & y - 2 \\ \therefore x = 2 & \therefore x = 4 & \therefore x = 1 \end{vmatrix}$
	A(2,0) $B(4,3)$ $C(1,2)$
	Υ Υ
	(43)
	B 6
	$c_{(1,2)}x - 3y = -5^{B}$
	2x + y = 4 $3x - 2y = 6$
	$X' \leftrightarrow A$ $(2,0) \rightarrow X$
	Now equation of $AB = eq. (2)$ i.e. $3x - 2y = 6$
	Equation of $BC = eq. (2)$ i.e. $3x - 2y = 0$
	& equation of $AC = eq.$ (3) i.e. $x - 3y = -3$
	Required area = $\int_{1}^{2} \left(\frac{x+5}{3} \right) - (4-2x) dx + \int_{2}^{4} \left(\frac{x+5}{3} \right) - \left(\frac{3x-6}{2} \right) dx$
	$= \frac{1}{3} \int_{1}^{2} (x+5-12+6x) dx + \frac{1}{6} \int_{2}^{4} (2x+10-9x+18) dx$
	$= \frac{1}{3} \int_{1}^{2} (7x - 7) dx + \frac{1}{6} \int_{2}^{4} (28 - 7x) dx$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$= \frac{7}{3} \int_{1}^{2} (x - 1) dx + \frac{7}{6} \int_{2}^{4} (4 - x) dx$
	$=\frac{7}{3}\left[\frac{x^2}{2}-x\right]_1^2+\frac{7}{6}\left[4x-\frac{x^2}{2}\right]_2^4$
	31 31 32
	$= \frac{7}{3} \left[(2-2) - \left(\frac{1}{2} - 1 \right) \right] + \frac{7}{6} \left[(16-8) - (8-2) \right]$
	$=\frac{7}{2}\left(\frac{1}{2}\right)+\frac{7}{6}(2)$
	$= \frac{7}{6} + \frac{14}{6} = \frac{21}{6} = \frac{7}{2}$
	∴ Required area = $\frac{7}{2}$ sq. units ans.
Q.5)	Find the area of region bounded by the line $y = 3x + 2$, x -axis, $x = -1$ and $x = 1$.
Sol.5) 1)	y = 3x + 2
	(.) line passing through points $(0,2)$ and $\left(\frac{-2}{3}, 0\right)$
2)	x – axis
L	

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

	ottadies road y.com
	$= \pi - \frac{\pi}{3} - \frac{\sqrt{3}}{2}$ $= \frac{2\pi}{3} - \frac{\sqrt{3}}{3}$
	∴ Required area = $\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$ sq. units ans.
Q.10)	Find the area bounded by the curves $(x-3)^2+y^2 \ge 9$ and $x^2+y^2 \le 9$.
Sol.10) 1)	$(x-3)^2 + y^2 \ge 9$
	(.) circle: center = $(3,0)$ and radius = 3
2)	(.) solution : outside the circle $x^2 + y^2 \le 9$
,	(.) solution : outside the circle $x^2 + y^2 \le 9$ (.) circle : center (0,0) and radius = 3 (.) solution : Inside the circle $x^2 + y^2 = 9$
	(.) solution: Inside the circle
	Intersection point Solving $x^2 + y^2 = 9$ and $(x - 3)^2 + y^2 = 9$
	Put $y^2 = 9 - x^2$ in $(x - 3)^2 + y^2 = 9$
	$\Rightarrow (x-3)^2 + 9 - x^2 = 9$
	$\Rightarrow x^2 + 9 - 6x + 9 - x^2 = 9$ $\Rightarrow 6x = 9$
	$x = \frac{3}{2}$
	$\therefore y = \frac{3\sqrt{3}}{2}$
	points $\left(\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$
	Now required = Area of circle – [Area of region $(A + B)$]
	Area of circle = $\pi r^2 = \pi (3)^2 = 9\pi$ sq. units
	Area of region $(A + B) = 2 \int_0^{\frac{3}{2}} \sqrt{9 - (x - 3)^2} dx + 2 \int_{\frac{3}{2}}^{\frac{3}{2}} \sqrt{9 - x^2} dx$
	$=2\left[\frac{(x-3)}{2}\sqrt{9-(x-3)^2}+\frac{9}{2}sin^{-1}\left(\frac{x-3}{3}\right)\right]_0^{\frac{3}{2}}+2\left[\frac{x}{2}\sqrt{9-x^2}+\frac{9}{2}sin^{-1}\left(\frac{x}{3}\right)\right]_{\frac{3}{2}}^{\frac{3}{2}}$
	$=2\left[\left(\frac{-3}{4}\cdot\frac{3\sqrt{3}}{2}+\frac{9}{2}sin^{-1}\left(\frac{-1}{2}\right)\right)-\left(0+\frac{9}{2}sin^{-1}(-1)\right)\right]+2\left[\left(0+\frac{9}{2}sin^{-1}(1)\right)-\left(\frac{3}{4}\cdot\frac{3\sqrt{3}}{2}+\frac{9}{2}sin^{-1}\left(\frac{1}{2}\right)\right)\right]^{2}$
	$= 2\left[\left(\frac{-9\sqrt{3}}{8} - \frac{9}{2} \cdot \frac{\pi}{6} \right) - \left(\frac{-9}{2} \cdot \frac{\pi}{2} \right) \right] + 2\left[\frac{9}{2} \cdot \frac{\pi}{2} - \frac{9\sqrt{3}}{8} - \frac{9}{2} \cdot \frac{\pi}{6} \right]$
	$= \frac{-9\sqrt{3}}{4} - \frac{9\pi}{6} + \frac{9\pi}{2} + \frac{9\pi}{2} - \frac{9\sqrt{3}}{4} - \frac{9\pi}{6}$ $= 9\pi - \frac{9\pi}{2} - \frac{9\sqrt{3}}{2}$
	$= \frac{18\pi}{3} - \frac{9\sqrt{3}}{2} \text{ sq. units}$
	Now required area = $9\pi - \left(\frac{18\pi}{3} - \frac{9\sqrt{3}}{2}\right)$
	$= \left(\frac{9\pi}{3} + \frac{9\sqrt{3}}{2}\right) \text{ sq. units} \text{ans.}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.