

STACKS, QUEUES AND LINKED LIST

Stack

In computer science, a stack is a Last in, First out (LIFO) data structure. It simply means that
element that is inserted at the end will be deleted first. To Manage a stack all the insertion and
deletion takes place from one position
 One of the common uses of stack is in function call.
Operations on the Stack
There are two fundamental operations
Push
Pop
Push means to insert an element
Pop means to delete an element
Queue

In computer science, a Queue is a First in, First out (FIFO) data structure. It simply means that an
element that is inserted at the beginning will be deleted f
deletion takes place from two different positions called “front” and “rear”.
Every element is inserted from the rear position and deleted from the front position in the queue.

Linked List
 A linked list is a data structure consisting of a group of
Under the simplest form, each node is composed of a data and a
the next node in the sequence; more complex variants add additional links. This structure allows for
efficient insertion or removal of elements from any position in the sequence.

Here in the figure is an example of a linked list whose nodes contain two fields: an integer value and
a link to the next node. The last node is linked to a terminator used to signify the end of the l

Linked lists are among the simplest and most common data structures. They can be used to
implement several other common
The principal benefit of a linked list over an
removed without reallocation or reorganization of the entire structure because the data items
be stored contiguously in memory or on disk. Linked lists allow insertion and removal of nodes at
any point in the list, and can do so with a constant number of operations if the link previous to the
link being added or removed is maintained during list traversal.
Linked list are dynamic structure where memory allocation takes place at run time.

Operation on a linked list

There are three basic operations on a linked list
Insertion
Deletion
Traversal

Inserting a node or element into Linked list :
Inserting an element into linked list contains 3 types .
1. Insertion at beginning of the Linked
2. Insertion after/before any element
3. Insertion at the end of the linked list

41

STACKS, QUEUES AND LINKED LIST

In computer science, a stack is a Last in, First out (LIFO) data structure. It simply means that
element that is inserted at the end will be deleted first. To Manage a stack all the insertion and
deletion takes place from one position/end called “top”.
One of the common uses of stack is in function call.

mental operations

In computer science, a Queue is a First in, First out (FIFO) data structure. It simply means that an
element that is inserted at the beginning will be deleted first. To manage a queue all the insertion and
deletion takes place from two different positions called “front” and “rear”.
Every element is inserted from the rear position and deleted from the front position in the queue.

consisting of a group of nodes which together represent a sequence.
Under the simplest form, each node is composed of a data and a reference (in other words, a
the next node in the sequence; more complex variants add additional links. This structure allows for

emoval of elements from any position in the sequence.

Here in the figure is an example of a linked list whose nodes contain two fields: an integer value and
a link to the next node. The last node is linked to a terminator used to signify the end of the l

Linked lists are among the simplest and most common data structures. They can be used to
implement several other common abstract data types, stacks, queues etc.
The principal benefit of a linked list over an array is that the list elements can easily be inserted or
removed without reallocation or reorganization of the entire structure because the data items

in memory or on disk. Linked lists allow insertion and removal of nodes at
any point in the list, and can do so with a constant number of operations if the link previous to the
link being added or removed is maintained during list traversal.

d list are dynamic structure where memory allocation takes place at run time.

There are three basic operations on a linked list

Inserting a node or element into Linked list :
to linked list contains 3 types .

1. Insertion at beginning of the Linked list
2. Insertion after/before any element of the linked list
3. Insertion at the end of the linked list

In computer science, a stack is a Last in, First out (LIFO) data structure. It simply means that an
element that is inserted at the end will be deleted first. To Manage a stack all the insertion and

In computer science, a Queue is a First in, First out (FIFO) data structure. It simply means that an
anage a queue all the insertion and

Every element is inserted from the rear position and deleted from the front position in the queue.

which together represent a sequence.
(in other words, a link) to

the next node in the sequence; more complex variants add additional links. This structure allows for

Here in the figure is an example of a linked list whose nodes contain two fields: an integer value and

a link to the next node. The last node is linked to a terminator used to signify the end of the list.
Linked lists are among the simplest and most common data structures. They can be used to

is that the list elements can easily be inserted or
removed without reallocation or reorganization of the entire structure because the data items need not

in memory or on disk. Linked lists allow insertion and removal of nodes at
any point in the list, and can do so with a constant number of operations if the link previous to the

d list are dynamic structure where memory allocation takes place at run time.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

42

Deleting a node from the Linked list.

A node can be deleted in 3 ways similar to Insertion.
1. Deleting a Node from the beginning of the Linked List
2. Deleting a node before/after an element from the Linked list.
3. Deleting a node from the end of the Linked List .

Implementation of stacks using a linked list
The stack which is implemented using linked list is called linked stack or dynamic stack

#include<iostream.h>
#include<conio.h>
struct node
{
int data;
node * next;
};
class stack
{
node *top;
public:
stack()
{
top=NULL;
}
void stackpush();
void stackpop();
void displaystack();
};

void stack::stackpush()
{
node *ptr;
ptr=new node;
cout<<"Enter the element to be pushed"<<endl;
cin>>ptr->data;
if(top==NULL)
 ptr->next=NULL;
else
 ptr->next=top;
top=ptr;
}
void stack ::stackpop()
{
 node *ptr;
ptr=top;
 cout<<"The popped element is "<<ptr->data;
 top=top->next;
 delete ptr;
}

void stack :: displaystack()
{
node *ptr;
ptr=top;
cout<<"The stack is "<<endl;
while(ptr!=NULL)
{
cout<<ptr->data<<endl;
ptr=ptr->next;
}
}

void main()
{
clrscr();
char ans;
stack s1;
do
{
s1.stackpush();
cout<<"wish to continue "<<endl;
cin>>ans;
}while(ans=='y');
s1.displaystack();
cout<<"Press any key to pop an
element"<<endl;
getch();
s1.stackpop();
s1.displaystack();
getch();
}

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

43

Implementation of queues using a linked list

The queue which is implemented using linked list is called linked queue or dynamic queue

#include<iostream.h>
#include<conio.h>
struct node
{
int data;
node * next;
};
class queue
{
node *front,*rear;
public:
queue()
{
rear=front=NULL;
}
void insqueue();
void delqueue();
void dispqueue();
};

void queue::insqueue()
{
node *ptr;
ptr=new node;
cout<<"Enter the element to be insert"<<endl;
cin>>ptr->data;
ptr->next=NULL;
if(rear==NULL)
 front=rear=ptr;
else
 {
 rear->next=ptr;
 rear=ptr;
 }
}
void queue ::delqueue()
{
 node *ptr;
 ptr=front;
 cout<<"The deleted element is "<<ptr->data;
 if(front==rear)
 front=rear=NULL;
 else
 front=front->next;
 delete ptr;
}

void queue :: dispqueue()
{
node *ptr;
ptr=front;
cout<<"The queue is "<<endl;
while(ptr!=NULL)
{
cout<<ptr->data<<endl;
ptr=ptr->next;
}
}

void main()
{
clrscr();
char ans;
queue q1;
do
{
q1.insqueue();
cout<<"wish to continue "<<endl;
cin>>ans;
}while(ans=='y');
q1.dispqueue();
cout<<"Press any key to delete an element
...."<<endl;
getch();
q1.delqueue();
q1.dispqueue();
getch();
}

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

44

Some Questions based on Board Examination on Linked stack & Linked Queue

Q1. Write a function in C++ to delete a node containing customer’s information, from a dynamically
allocated Queue of Customers implemented with the help of the following structure:
struct Customer
{int CNo;

char CName[20];
Customer *Link;

};
Ans: struct Customer
{

int CNo;
char CName[20];
Customer *Link;

} *Front, *Rear, *ptr;
void DELETE()
{
 if(Front = = NULL)

cout<<”\n Queue Underflow\n”;
 else
 {

ptr = Front;

Front = Front→Link;
delete ptr;

 }
 }
Q2. Write a function in C++ to delete a node containing Book’s information, from a dynamically

allocated Stack of Books implemented with the help of the following structure.
struct Book
{int BNo;

char BName[20];
Book *Next;

};
Ans: struct Book
{

int BNo;
char BName[20];
Book *Next;

}*top, *ptr;
void POP()
{
if(top = = NULL)

cout<<”\n Stack Underflow\n”;
 else
 {

ptr = top;

top = top→Next;
delete ptr; }

 }

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

45

Q 3.Evaluate the postfix notaion of expression.
 4, 10 , 5 , + , * , 15 , 3 ,/ , -

Q. 4. Convert the following infix expression to its equivalent postfix expression, showing the stack

contents for each step of conversion.

X / Y + U* (V-W)

Ans. :- X / Y + U* (V-W)=((X / Y)+(U*(V-W)))

Sno. Symbol Stack

0 [

1 4 [4

2 10 [4,10

3 5 [4,10,5

4 + [4
[4,15

5 * [
[60

6 15 [60,15

7 3 [60,15,3

8 / [60
[60,5

9 - [
[55

10] 55 Ans

Element Stack Postfix

(

(

X X

/ / X

Y / XY

) XY/

+ + XY/

(+ XY/

U + XY/U

* +* XY/U

(+*(XY/U

V +*(XY/UV

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

46

X / Y

+ U*

(V-W)= XY/UVW-*+

- +*(- XY/UV

W +*(- XY/UVW

) +* XY/UVW-

) + XY/UVW-*

) XY/UVW-*+

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

