
 29

Chapter -8

POINTERS

Pointers :
- Pointer is a variable that holds a memory address of another variable.

- It supports dynamic allocation routines.

- It can improve the efficiency of certain routines.

C++ Memory Map :
- Program Code : It holds the compiled code of the program.

- Global Variables : They remain in the memory as long as program continues.

- Stack : It is used for holding return addresses at function calls, arguments passed to the

functions, local variables for functions. It also stores the current state of the CPU.

- Heap : It is a region of free memory from which chunks of memory are allocated via DMA

functions.

Static Memory Allocation : The amount of memory to be allocated is known in advance and it

allocated during compilation, it is referred to as Static Memory Allocation.

Eg. Int a; // This will allocate 2 bytes for a during compilation.

Dynamic Memory Allocation : The amount of memory to be allocated is not known beforehand

rather it is required to allocated as and when required during runtime, it is referred to as dynamic

memory allocation.

C++ offers two operator for DMA – new and delete.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 30

Free Store : It is a pool of unallocated heap memory given to a program that is used by the program

for dynamic memory allocation during execution.

Declaration and Initialization of Pointers :

Syntax : Datatype *variable_name;

Eg. Int *p; float *p1; char *c;

Two special unary operator * and & are used with pointers. The & is a unary operator that returns

the memory address of its operand.

Eg. Int a = 10; int *p; p = &a;

Pointer arithmetic:
Two arithmetic operations, addition and subtraction, may be performed on pointers.

When you add 1 to a pointer, you are actually adding the size of whatever the pointer is pointing at.

That is, each time a pointer is incremented by 1, it points to the memory location of the next element

of its base type.

Eg. Int *p; P++;

If current address of p is 1000, then p++ statement will increase p to 1002, not 1001.

If *c is char pointer and *p is integer pointer then

Char pointer C c+1 c+2 c+3 c+4 c+5 c+6 c+7

Address 100 101 102 103 104 105 106 107

Int pointer p p+1 p+2 p+3

Adding 1 to a pointer actually adds the size of pointer’s base type.

Base address : A pointer holds the address of the very first byte of the memory location where it is

pointing to. The address of the first byte is known as BASE ADDRESS.

Dynamic Allocation Operators :
C++ dynamic allocation routines obtain memory for allocation from the free store, the pool of

unallocated heap memory provided to the program. C++ defines two unary operators new and delete

that perform the task of allocating and freeing memory during runtime. The operators new and

delete are also called as free store operators.

Creating Dynamic Array :

Syntax : pointer-variable = new data-type [size];

Eg. int * array = new int[10];

Not array[0] will refer to the first element of array, array[1] will refer to the second element. No

initializes can be specified for arrays.

All array sizes must be supplied when new is used for array creation.

Two dimension array :

Int *arr, r, c;

Datatype *variable_name;

Int *p; float *p1; char *c;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 31

R = 5; c = 5;

Arr = new int [r * c];

Now to read the element of array, you can use the following loops :

For (int i = 0; i < r; i++)

{

 cout << “\n Enter element in row “ << i + 1 << “ : “;

 For (int j=0; j < c; j++)

 Cin >> arr [i * c + j];

}

Memory released with delete as below :

Syntax for simple variable :

Delete pointer-variable;

Eg. delete p;

For array :

delete [size] pointer variable;

Eg. delete [] arr;

Pointers and Arrays :

C++ treats the name of an array as if it were a pointer i.e. memory address of some element. C++

interprets an array name as the address of its first element.

That is, if marks is an int array to hold 10 integers then marks stores the address of marks[0], the first

element of the array i.e., the array name marks is a pointer to an integer which is the first element of

array marks[10].

void main()

{

int *m;

int marks[10];

cout << “\n Enter marks :”;

for (int i = 0; i < 10; i++)

 cin >> marks[i];

m = marks;

cout << “\n m points to “ << *m;

cout << “\n Marks points to “ << *marks;

}

The name of an array is actually a pointer pointing to the first element of the array.

Since the name of an array is a pointer to its first element, the array+1 gives the address of the

second element, array+2 gives the address of the third element, and so on.

Thus, to print the fourth element of array marks, we can give either of the following :

Cout << marks [3]; OR cout << * (marks+3);

Array of Pointers :

To declare an array holding 10 int pointers –

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 32

int * ip[10];

That would be allocated for 10 pointers that can point to integers.

Now each of the pointers, the elements of pointer array, may be initialized. To assign the address of

an integer variable phy to the forth element of the pointer array, we have to write

ip[3] = & phy;

Now with *ip[3], we can find the value of phy.

int *ip[5];

Index 0 1 2 3 4

address 1000 1002 1004 1006 1008

int a = 12, b = 23, c = 34, d = 45, e = 56;

Variable a b c d e

Value 12 23 34 45 56

address 1050 1065 2001 2450 2725

ip[0] = &a; ip[1] = &b; ip[2] = &c; ip[3] = &d; ip[4] = &e;

Index ip[0] ip[1] ip[2] ip[3] ip[4]

Array ip value 1050 1065 2001 2450 2725

address 1000 1002 1004 1006 1008

ip is now a pointer pointing to its first element of ip. Thus

ip is equal to address of ip[0], i.e. 1000

*ip (the value of ip[0]) = 1050

* (* ip) = the value of *ip = 12

* * (ip+3) = * * (1006) = * (2450) = 45

Now see the program given below :

#include<iostream.h>

Void main()

{

 int x[3][5] = { {1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15} };

 int *n = &x[0][0];

 cout << “\n 1. * (*(x+2)+1) = ” << *(*(x+2)+1);

 cout << “\n 2. *(*x+2)+5 = ” <<*(*x+2)+5;

 cout << “\n 3. *(*(x+1)) = ” << *(*(x+1));

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 33

 cout << “\n 4. *(*(x)+2)+1 = ” << *(*(x)+2)+1;

 cout << “\n 5. *(*(x+1)+3) = ” << *(*(x+1)+3);

 cout << “\n 6. *n = ” << *n;

 cout << “\n 7. *(n+2) = ” << *(n+2);

 cout << “\n 8. (*(n+3)+1) = ” << (*(n+3)+1);

 cout << “\n 9. *(n+5)+1 = ” << *(n+5)+1;

 cout << “\n 10. ++*n = ” << ++*n;

}

Output with Explanation :

1. * (*(x+2)+1) = 12 --- *(*(x+2)+1) = *(x[2]+1) = x[2][1] = 12

2. *(*x+2)+5 = 8 --- *(*x+2)+5 = *(x[0]+2)+5 = x[0][2] + 5 = 3+5 = 8

3. *(*(x+1)) = 6 --- *(*(x+1)) = *(x[1]) = *(x[1]+0) = x[1][0] = 6

4. *(*(x)+2)+1 = 4 --- *(*(x)+2)+1 = *(x[0]+2)+1 = (x[0][2])+1 = 3+1 = 4

5. *(*(x+1)+3) = 9 --- *(*(x+1)+3) = *(x[1] +3) = x[1][3] = 9

6. *n = 1 --- *n = x[0][0] = 1 (first element)

7. *(n+2) = 3 --- *(n+2) = x[0][2] = 3 (third element)

8. (*(n+3)+1) = 5 --- (*(n+3)+1) = x[0][3] (fourth element) + 1 = 4 + 1 = 5

9. *(n+5)+1 = 7 --- *(n+5)+1 = x[1][0] (sixth element) + 1 = 6+1 = 7

10. ++*n = 2 --- ++ *n = ++ 1 = 2

Pointers and Strings :

Pointer is very useful to handle the character array also.

Eg :

Char name[] = “computer”;

Char *cp;

For (cp = name; *cp != ‘\0’; cp++)

 Cout << ”--“<<*cp;

Output :

--c--o--m--p--u--t--e--r

An array of char pointers is very useful for storing strings in memory.

Char *subject[] = { “Chemistry”, “Phycics”, “Maths”, “CS”, “English” };

In the above given declaration subject[] is an array of char pointers whose element pointers contain

base addresses of respective names. That is, the element pointer subject[0] stores the base address of

string “Chemistry”, the element pointer subject[1] stores the above address of string “Physics” and

so forth.

An array of pointers makes more efficient use of available memory by consuming lesser number of

bytes to store the string.

An array of pointers makes the manipulation of the strings much easier. One can easily exchange the

positions of strings in the array using pointers without actually touching their memory locations.

Pointers and CONST :
A constant pointer means that the pointer in consideration will always point to the same address. Its

address can not be modified.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 34

A pointer to a constant refers to a pointer which is pointing to a symbolic constant.

Look the following example :

Int m = 20; // integer m declaration

Int *p = &m; // pointer p to an integer m

++ (*p); // ok : increments int pointer p

Int * const c = &n; // a const pointer c to an intger n

++ (* c); // ok : increments int pointer c i.e. its contents

++ c; // wrong : pointer c is const – address can’t be modified

Const int cn = 10; // a const integer cn

Const int *pc = &cn; // a pointer to a const int

++ (* pc); // wrong : int * pc is const – contents can’t be modified

++ pc; // ok : increments pointer pc

Const int * const cc = *k; // a const pointer to a const integer

++ (* cc); // wrong : int *cc is const

++ cc; // wrong : pointer cc is const

Pointers and Functions :

A function may be invoked in one of two ways :

1. call by value 2. call by reference

The second method call by reference can be used in two ways :

1. by passing the references 2. by passing the pointers

Reference is an alias name for a variable. For ex :

Int m = 23;

Int &n = m;

Int *p;

P = &m;

Then the value of m i.e. 23 is printed in the following ways :

Cout << m; // using variable name

Cout << n; // using reference name

Cout << *p; // using the pointer

Invoking Function by Passing the References :

When parameters are passed to the functions by reference, then the formal parameters become

references (or aliases) to the actual parameters to the calling function.

That means the called function does not create its own copy of original values, rather, it refers to the

original values by different names i.e. their references.

For example the program of swapping two variables with reference method :

#include<iostream.h>

Void main()

{

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 35

 void swap(int &, int &);

 int a = 5, b = 6;

 cout << “\n Value of a :” << a << “ and b :” << b;

 swap(a, b);

 cout << “\n After swapping value of a :” << a << “and b :” << b;

}

Void swap(int &m, int &n)

{

 int temp;

 temp = m;

 m = n;

 n = temp;

}

output :

Value of a : 5 and b : 6

After swapping value of a : 6 and b : 5

Invoking Function by Passing the Pointers :

When the pointers are passed to the function, the addresses of actual arguments in the calling

function are copied into formal arguments of the called function.

That means using the formal arguments (the addresses of original values) in the called function, we

can make changing the actual arguments of the calling function.

For example the program of swapping two variables with Pointers :

#include<iostream.h>

void main()

{

 void swap(int *m, int *n);

 int a = 5, b = 6;

 cout << “\n Value of a :” << a << “ and b :” << b;

 swap(&a, &b);

 cout << “\n After swapping value of a :” << a << “and b :” << b;

}

void swap(int *m, int *n)

{

 int temp;

 temp = *m;

 *m = *n;

 *n = temp;

}

iutput :

Value of a : 5 and b : 6

After swapping value of a : 6 and b : 5

Function returning Pointers :

The way a function can returns an int, an float, it also returns a pointer. The general form of

prototype of a function returning a pointer would be

Type * function-name (argument list);

#include <iostream.h>

int *min(int &, int &);

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 36

void main()

{

 int a, b, *c;

 cout << “\nEnter a :”; cin >> a;

 cout << “\nEnter b :”; cint >> b;

 c = min(a, b);

 cout << “\n The minimum no is :” << *c;

}

int *min(int &x, int &y)

{

 if (x < y)

 return (&x);

 else

 return (&y);

}

Dynamic structures :

The new operator can be used to create dynamic structures also i.e. the structures for which the

memory is dynamically allocated.

struct-pointer = new struct-type;

student *stu;

stu = new Student;

A dynamic structure can be released using the deallocation operator delete as shown below :

delete stu;

Objects as Function arguments :

Objects are passed to functions in the same way as any other type of variable is passed.

When it is said that objects are passed through the call-by-value, it means that the called function

creates a copy of the passed object.

A called function receiving an object as a parameter creates the copy of the object without invoking

the constructor. However, when the function terminates, it destroys this copy of the object by

invoking its destructor function.

If you want the called function to work with the original object so that there is no need to create and

destroy the copy of it, you may pass the reference of the object. Then the called function refers to the

original object using its reference or alias.

Also the object pointers are declared by placing in front of a object pointer’s name.

Class-name * object-pointer;

Eg. Student *stu;

The member of a class is accessed by the arrow operator (->) in object pointer method.

Eg :

#include<iostream.h>

class Point

{

private :

int x, y

 public :

 Point()

 {

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 37

 x = y = 0;

 }

 void getPoint(int x1, int y1)

 {

 x = x1; y = y1;

 }

 void putPoint()

 {

 cout << “\n Point : (“ << x << “, “ << y << “)”;

 }

};

void main()

{

 Point p1, *p2;

cout << “\n Set point at 3, 5 with object”;

 p1.getPoint(3,5);

cout << “\n The point is :”;

 p1.putPoint();

 p2 = &p1;

 cout << “\n Print point using object pointer :”;

 p2->putPoint();

cout << “\n Set point at 6,7 with object pointer”;

 p2->getPoint(6,7);

 cout<< “\n The point is :”;

 p2->putPoint();

 cout << “\n Print point using object :”;

 p1.getPoint();

}

If you make an object pointer point to the first object in an array of objects, incrementing the pointer

would make it point to the next object in sequence.

student stud[5], *sp;

sp = stud; // sp points to the first element (stud[0])of stud

sp++; // sp points to the second element (stud[1]) of stud

sp + = 2; // sp points to the fourth element (stud[3]) of stud

sp--; // sp points to the third element (stud[2]) of stud

You can even make a pointer point to a data member of an object. Two points should be considered :

1. A Pointer can point to only public members of a class.

2. The data type of the pointer must be the same as that of the data member it points to.

this Pointer :
In class, the member functions are created and placed in the memory space only once. That is only

one copy of functions is used by all objects of the class.

Therefore if only one instance of a member function exists, how does it come to know which

object’s data member is to be manipulated ?

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 38

Member Function1 Member Function2 Member Function3

 Object 1 Object 2 Object 3

 Data Member 1

Data Member 2

Data Member 1

Data Member 2

Data Member 1

Data Member 2

For the above figure, if Member Function2 is capable of changing the value of Data Member3 and

we want to change the value of Data Member3 of Object3. How would the Member Function2 come

to know which Object’s Data Member3 is to be changed ?

To overcome this problem this pointer is used.

When a member function is called, it is automatically passed an implicit argument that is a pointer to

the object that invoked the function. This pointer is called This.

That is if ojbect3 is invoking member function2, then an implicit argument is passed to member

function2 that points to object3 i.e. this pointer now points to object3.

The friend functions are not members of a class and, therefore, are not passed a this pointer.

The static member functions do not have a this pointer.

Summary :

Pointers provide a powerful way to access data by indirection. Every variable has an address, which

can be obtained using the address of operator (&). The address can be stored in a pointer.

Pointers are declared by writing the type of object that they point to, followed by the indirection

operator (*) and the name of the pointer. Pointers should be initialized to point to an object or to null

(0).

You access the value at the address stored in a pointer by using the indirection operator (*). You can

declare const pointers, which can't be reassigned to point to other objects, and pointers to const

objects, which can't be used to change the objects to which they point.

To create new objects on the free store, you use the new keyword and assign the address that is

returned to a pointer. You free that memory by calling the delete keyword on the pointer. delete frees

the memory, but it doesn't destroy the pointer. Therefore, you must reassign the pointer after its

memory has been freed.

Solved Questions
Q. 1 How is *p different from **p ?

Ans : *p means, it is a pointer pointing to a memory location storing a value in it. But **p means, it

is a pointer pointing to another pointer which in turn points to a memory location storing a

value in it.

Q. 2 How is &p different from *p ?

Ans : &p gives us the address of variable p and *p. dereferences p and gives us the value stored in

memory location pointed to by p.

Q. 3 Find the error in following code segment :

 Float **p1, p2;

 P2 = &p1;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 39

Ans : In code segment, p1 is pointer to pointer, it means it can store the address of another pointer

variable, whereas p2 is a simple pointer that can store the address of a normal variable. So

here the statement p2 = &p1 has error.

Q. 4 What will be the output of the following code segment ?

 char C1 = ‘A’;

 char C2 = ‘D’;

 char *i, *j;

 i = &C1;

 j = &C2;

 *i = j;

 cout << C1;

Ans : It will print A.

Q. 5 How does C++ organize memory when a program is run ?

Ans : Once a program is compiled, C++ creates four logically distinct regions of memory :

(i) area to hold the compiled program code

(ii) area to hold global variables

(iii) the stack area to hold the return addresses of function calls, arguments passed to the

functions, local variables for functions, and the current state of the CPU.

(iv) The heap area from which the memory is dynamically allocated to the program.

Q. 6 Identify and explain the error(s) in the following code segment :

 float a[] = { 11.02, 12.13, 19.11, 17.41};

 float *j, *k;

 j = a;

 k = a + 4;

 j = j * 2;

 k = k / 2;

 cout << “ *j = “ << *j << “, *k = “ << *k << “\n”;

Ans : The erroneous statements in the code are :

 j = j * 2;

 k = k / 2;

Because multiplication and division operations cannot be performed on pointer and j and k

are pointers.

Q. 13 How does the functioning of a function differ when

 (i) an object is passed by value ? (ii) an object is passed by reference ?

Ans : (i) When an object is passed by value, the called function creates its own copy of the

object by just copying the contents of the passed object. It invokes the object’s copy

constructor to create its copy of the object. However, the called function destroys its

copy of the object by calling the destructor function of the object upon its

termination.

(i) When an object is passed by reference, the called function does not create its own

copy of the passed object. Rather it refers to the original object using its reference or

alias name. Therefore, neither constructor nor destructor function of the object is

invoked in such a case.

UNSOLVED QUESTIONS

1. Differentiate between static and dynamic allocation of memory.

2. Identify and explain the error in the following program :

#include<iostream.h>

int main()

{

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 40

 int x[] = { 1, 2, 3, 4, 5 };

 for (int i = 0; i < 5; i++)

 {

 cout << *x;

 x++;

 }

 return 0;

}

3. Give the output of the following :

char *s = “computer”;

for (int x = strlen(s) – 1; x >= 0; x--)

{

 for(int y =0; y <= x; y++) cout << s[y];

 cout << endl;

}

4. Identify the syntax error(s), if any, in the following program. Also give reason for errors.

void main()

{

 const int i = 20;

 const int * const ptr = &i;

 (*ptr++;

 int j= 15;

 ptr = &j; }

5. What is ‘this’ pointer ? What is its significance ?

6. Are pointers really faster than array ? How much do function calls slow things down ? Is

++i faster than i = i + 1 ?

7. What will be the output of following program ?

#include<iostream.h>

void main()

{

 char name1[] = “ankur”;

 char name2[] = “ankur”;

 if (name1 != name2)

 cout << “\n both the strings are not equal”;

 else

 cout << “\n the strings are equal”; }

8. Write a function that takes two string arguments and returns a string which is the larger

of the two. The larger string has larger ASCII value. Also show how this function will be

invoked.

9. Give and explain the output of the following code :

void junk (int, int *);

int main() {

 int i = 6, j = -4;

 junk (i, &j);

 cout << “i = “ << i << “, j = “ << j << “\n”;

 return 0; }

void junk(int a, int *b)

{

 a = a* a;

 *b = *b * *b; }

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 41

10. Give the output of the following program :

void main()

{ int array[] = { 2, 3, 4, 5 };

 int *ap = array;

 int value = *ap;

 cout << value << “\n”;

 value = *ap++;

 cout << value << “\n”;

 value = * ap;

 cout << value << “\n”;

 value = * ++ ap;

cout << value << “\n”; }

High Order Thinking Skills (HOTS)

Q1. What is wrong with the following while loops (ans how does the correct ones look like):

 (i) int counter =1; (ii) int counter =1;

 While (counter<100) while (counter <100)

 { cout<<counter<< “\n”;

 cout<<counter<<”\n”; counter + +;

 counter--;

 }

Ans (i) In this loop the counter is decremented, so it will have values 1,0,-1,-2,-3…… so this loop

is an infinite loop. To fix, we need to use counter ++ instead of counter - - to fix

 while (counter<100)

 {

……

 counter + +;

 }

(ii) In this loop there are not brackets surrounding the code block of the while loop.

Therefore, only the line immediately following the while statement repeats. To fix, we need

to add grouping bracket around the indented lines after the while statement i.e. as :

 while (counter<10)

 {

 cout<<counter<<”\n”;

 counter++;

 }

Q2. Write a c++ function that converts a 2-digit octal number into binary number and

prints the binary equivalent.

Ans Assume that a header file and main() is including in a program

 The function is as follows:

 Void octobin(int oct)

 {

 long binn=0;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 42

 int a[6]; /*Each octal digit is converted into 3 bits thus for 2 octal digits

 -- space for 6 bits has been reserved here*/

 int d1,d2,q,r,;
 d1=oct%10;

 d2= oct/10;

 for int (i=0; i<6; i++)

 {

 a[i] =0;

 }

for (i=0; i<3; i++)

{ q=d1/2;

r=d1%2;

a[i]=r;

d1=q; }

for (; i<6;i++)

{

q=d2/2;

r=d2%2;

a[i]=r;

d2=q;

}

for (i=i-1; i>=0;i - -)

{

binn * =10;

binn += a[i];

}

cout<<endl<<binn<<endl;

}

Q3. How we can use arrays as arguments? Explain with example

Ans Array can be used as other data types, as arguments to functions. Here is an example of it

 // Array as arguments

 #include <iostream.h>

 const int district=4;

 const int months=6;

 void display (int [districts][months]);

 void main()

 {

 int d,m;

 int sales [districts] [months];

 cout<<endl;

 for (d=0;d<districts; d++)

 for (m=0;m<months; m++)

 {

 cout<<”enter sales:”<d++;

 cout<<”, months:”<<m+1;

 cin>>sales[d][m];

 }

 display (sales);

 }

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 43

 void display (int funcsales [districts] [months])

 {

 int d,m;

 for (d=o; d<districts; d++)

 {

 cout <<”in district”<< d+1;

 for (m=0; m<months; m++)

 cout<<funcsales[d][m];

 cout<<endl;

 }

 }

Q4. Write a program that the roll numbers, marks in English, Computers, Maths out of 100 for

50 students (i.e. need no read them)

 Write a function in c++, using structures, to calculate the following:-

(i) No. of students passed with distinction

(ii) Details of top two students

(iii) Number of students failed

For distinction, a student needs to score atleast 75% and minimum marks are 40%

Ans #include<iostream.h>

 #include<conio.h>

 const int size=50;

 struct kvstudent

 {

 int kvrollno;

 float kveng;

 float kvcomp;

 float kvmaths;

 }

 kvstudent sarr[size],t1,t2;

 float total,avg,top1=0,top2=0;

 int ndist=0, nfail=0;

 void kvresult()

 {

 clrscr();

 for (int= 0;int<size;i++)

{

 total= sarr[i].kveng + sarr[i].kvcomp+sarr[i].kvmaths;

 avg= total/3;

 if (avg>=75)

 ndist++;

 else if(avg<40)

 nfail++;

 if(top1<avg)

 {

 top1=avg;

 t1=sarr[i];

 }

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 44

 else if (top2<avg && avg <=top1)

 {

 top2 =avg;

 t2= sarr[i]; } }

 cout<< “\n total number of distinction holders are :”<<ndist<< endl;

 cout<< “\n toal number of failed students are:”<<nfail<<endl;

cout<< “ \n Ist Topper is (Top Scorer) : \n”;

cout<< “ Roll Number : ”<<t1.kvrollno<< “\t English:” <<t1.kveng

<< “\t Computers:” <<t1.kvcomp<<<< “\t Maths:” <<t1.kvmaths

<< “\n Aggregate % :” <<top1<<endl;

cout<< “ \n IInd Topper is : \n”;

cout<< “ Roll Number : ”<<t2.kvrollno<< “\t English:” <<t2.kveng

<< “\t Computers:” <<t2.kvcomp<<<< “\t Maths:” <<t2.kvmaths

<< “\n Aggregate % :” <<top2<<endl;

}

Q5. What do you think about polymorphism and how you can explain for effective coding

as a part of Object Oriented Language?

Ans Polymorphism in an object oriented programming language works under main() and with

statements like decision statements and looping statements and works under the pointers and

structures. A polymorphism is also be understandable as a function overloading. This is the

ability of an object to behave differently in different circumstances can effectively be

implemented in programming through function overloading.

 It helps in coding to represent the same function in different modes of program. The

programmer is relieved from the burden of choosing the right function for a given set of

values. This important responsibility is carried out by the compiler when a function is

overloaded.

Q6. How we can overload binary operator?. Expalin with example.

Ans Binary Operator can be overloaded in the same manner as unary operator. We can take an

example of overloading ‘equal to’ (= =) operator.

 We will use this operator to compare the strings, returning values ‘true’ if strings are same

and false otherwise.

 Program of overloading binary operator(= =), declaration of functions inside the class.

 #include <iostream.h>

 #include<string.h>

 enum boolean { true , false }; // use of enum

 class string

 {

 private:

 char s[100];

 public:

 string()

{

strcpy(s, “ ”);

}

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 45

string (char a[]) // overloading of string function

{

 strcpy (s,a);

}

void display()

{

cout<<s;

}

void gets()

{

cin.get(s,100)

}

Boolean operator = =(string ss)

{

return (strcmp(s,ss.s)= =0)?true :false;

}

};

void main()

{

string s1= “overlaod”;

string s2;

cout<< “\n enter a word”;

s2.gets(); //gets strings from user

if (s2= =1)

cout<<” you typed a correct word \n”;

else

cout<< “ Invalid Match \n”;

}

Q7. How we can overload constructor?. explain with example.

Ans The constructor is defined as class name. A constructor of a class may also be overloaded so

that even with different number and types of initial values, an object may still be initialized.

 #include<iostream.h>

 #include<conio.h>

 class Deposit

 {

 long int principal;

 int time;

 float rate;

 float total_amt;

 public:

 Deposit();

 Deposit(long p, int t, float r);

 Deposit(long p, int t);

 Deposit(long p, float r);

 void calc_amt(void);

 void display(void);

 };

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 46

 Deposit:: Deposit()

 {

 principal =time=rate=0.0;

 }

 Deposit:: Deposit(long p, int t, float r)

 {

 principal=p;

time=t;

rate =r;

}

Deposit:: Deposit(long p, int t)

 {

 principal=p;

time=t;

rate =0.07;

}

Deposit:: Deposit(long p, float r)

 {

 principal=p;

time=4;

rate =r;

}

 void Deposit::calc_amt(void)

 {

 totat_amt= principal +(principal *time * rate)/100;

 }

 void Deposit::display (void)

 {

 cout<< “\n Principal Amount : Rs.”<<principal;

 cout<< “\n Period of Investment: “<< time << “years”;

 cout<< “\n Rate of intrest :”<<rate;

 cout<< “\n Total amount is:Rs. :- > ” <<total_amt;

 }

 void main()

{

 clrscr();

 Deposit D1;

 Deposit D2(5000,2,0.05);

 Deposit D3(6000,4);

 Deposit D4(4000,0.08);

 D1.calc_amt();

 D2.clac_amt();

 D3.calc_amt();

 D4.clac_amt();

 cout<< “\n display of object One is: ”;

 D1.display();

 cout<< “\n display of object Two is: ”;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 47

 D2.display();

cout<< “\n display of object Three is: ”;

 D3.display();

 cout<< “\n display of object Four is: ”;

 D4.display();

 }

Q8. Find the errors in the following program. State reasons:

 #include<iostream.h>

class A

 {

 int a1;

 public:

 int a2;

 protected:

int a3;

};

class B: public A

{

 public:

 void func()

 {

 int b1,b2,b3;

 b1=a1;

 b2=a2;

b3=a3;

}

 };

 class C: A

 {

 public:

 void f()

 {

 int c1,c2,c3;

 c1=a1;

 c2=a2;

 c3=a3;

 }

};

int main()

{

 int p,q,r,i,j,k;

 B 01;

 C 02;

 p=01.a1;

 q=01.a2;

 r=01.a3;

 i=01.a1;

 j=01.a2;

 k=01.a3;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 48

 return 0; }

Ans The errors in the above given program are as described below:

1. B:: func() cannot access A::a1 as a1 is a private member of A, Therefore, b1=a1;

 is illegal

2. C=f() cannot access A::a1 as a1 is a private number of A, Therefore,

c1=a1; is illegal

3. In main(), the statement p=01.a1; is illegal because a1 is not the public member of B and

hence cannot be accessed directly by its objects.

4. In main(), the statement r = 01.a3; is illegal for the same reason as specified in point 3.

5. The statements

i = 02.a1;

f = 02.a2;

k = 02.a3;

are illegal as neither of a1,a2 and a3 are public members of C (which is inheriting

privately from A) and hence cannot be accessed directly by the objects of C class.

Q9. What will be the output of the following:

#include <iostream.h>

void main()

{

int v1=5, v2=10;

for (int x=1; x<=2; x++)

{

cout<<++v1<< “\t”<<v2--<<endl;

cout<< --v2<< “\t”<<v1++<<endl;

}

}

Ans The output will be

6 10

8 6

8 8

6 8

Q10 Write a program that reads a string and counts the number of vowels, words and blank

spaces present in the string.

Ans

 #include<iostream.h>

 #include<stdio.h>

 main()

Q11 Identify the errors in the following code segment

 int main()

 {

 cout<< “ enter two numbers”;

 cin>>num>>auto;

 float area=length * breadth;

 }

Ans

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 49

1. Variable auto is invalid (it is a reserved keyword)

2. Variables (num,auto (though invalid) are not defined before their usage.

3. Even though variable length and breadth are also not defined

4. Return statement is missisng

Q12 Name the header file for using in built functions in the program

 (i) setw(), (ii) puts(), (iii) isdigit(), (iv) fabs()

Ans Header files are

 (i) iomanip.h, (ii) stdio.h (iii) ctype.h (iv) math.h

Q13. Write a program to generate a function with parameters and array in function

 e.g. show is function name

 then show(int[],int);

Ans

 #include<iostream.h>

#include<conio.h>

main()

{

clrscr();

 int a[5];

 void show(int[],int); // declaration of a function (prototype)

 cout<<"enter the number=";

 for(int i=0;i<5;i++)

 {

 cin>>a[i];

 }

 cout<<"ARRAYS"<<endl;

 show(a,5); // calling of function

 getch(); // for freeze the monitor

}

void show(int s[],int n) //defining of a function

{

 for(int i=0;i<n;i++)

 {

 cout<<s[i]<<endl;

 }

}

Q. 14 What will be the output of following code fragment ?

 #include<iostream.h>

 #include<conio.h>

 main()

 {

 clrscr();

 int a[] = {3, 5, 6, 7};

 int *p, **q, ***r, *s, *t, ** ss;

 p = a;

 s = p + 1;

 q = &s;

 t = (*q + 1);

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 50

 ss = &t;

 r = &ss;

 cout << *p << ‘\t’ << **q << ‘\t’ << ***r << end;

 }

Ans : 3 5 6

Q15 What is the relationship between an array and a pointer ? Given below a function to tranverse

a character array using For-loop. Use a pointer in place of an index X and substitute for-loop

with while-loop so that the output of the function stringlength() remains the same.

 int strlength(char s[])

 {

 int count = 0;

 for (int x = 0; s[x]; x++)

 cout ++;

 return (count); }

Ans : The relationship between an array and a pointer is that the name of an array is actually a

pointer pointing to the first element of the array.

 int strlength(char s[])

 {

 int count = 0;

 while (*s)

 {

 count++;

 s++; }

 return (count); }

Q16 Give the output of the following program segment : (assuming all required header files

are included in the program)

 char *name = “KenDriYa”;

 for (int x = 0; x < strlen(name); x++)

 if (islower (name[x]})

 name[x] = toupper (name[x]);

 else

 if (isupper (name[x]))

 if (x%2 != 0)

 name[x] = tolower (name[x-1])

 else

 name[x]--;

 cout << name << endl;

Ans : jENnRIXA

Q17 What do you under by memory leaks ? What are the possible reasons for it ? How can

memory leaks be avoided ?

Ans : If the objects, that are allocated memory dynamically, are not deleted using delete, the

memory block remains occupied even at the end of the program. Such memory blocks are

known as orphaned memory blocks.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 51

This orphaned memory blocks when increase in number, bring as adverse effect on the

system. This situation is known as memory leak. The possible reasons for this are :

(i) A dynamically allocated object not deleted using delete.

(ii) Delete statement is not getting executed because of some logical error.

(iii) Assigning the result of a new statement to an already occupied pointer.

The memory leaks can be avoided by

(ii) making sure that a dynamically allocated object is deleted.

(iii) A new statement stores its return values (a pointer) in a fresh pointer.

Q18 Predict and explain the output of the following program :

Ans : #include<iostream.h>

 #include<conio.h>

 int main()

 {

 clrscr();

 float x = 5.999;

 float *y, *z;

 y = &x;

 z = y;

 cout << x << “, “ << “(&x) << “ , “ << *y << “, “ << *z << “\n”;

 return 0; }

Ans : The output of this program will be

 5.999, 5.999, 5.999, 5.999

The reason for this is x gives the value stored in the variable x. *(&x) gives the data value

stored in the address &x i.e. address of x i.e. the data value of x. Since y points to x (y =

&x), *y gives the value of x. And because z has the same address as that of y. *z also gives

the value of x i.e. 5.999.

Q19 Give the output following program :

 #include<iostream.h>

 Int a = 13;

 Void main()

 {

 Void demo(int &, int , int *);

 Int a = 7, b = 4;

 Demo (::a, a, &b);

 Cout << ::a << “ “ << a << “ “ << b << endl;

 }

 Void demo(int &x, int y, int *z)

 {

 A + = x;

 Y * = a;

 *z = a + y;

 Cout << x << “ “ << y << “ “ << *z << endl;

 }

Ans :

 26 182 208

 26 7 208

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

