

5

Unit-I
Object Oriented Programming in C++

Revision Tour of Class XI Chapter: 01
� Keywords:Keywords are the certain reserved words that convey a special meaning to the
compiler. These are reserve for special purpose and must not be used as identifier name.eg for , if,
else , this , do, etc.

� Identifiers:Identifiers are programmer defined names given to the various program
elements such as variables, functions, arrays, objects, classes, etc.. It may contain digits, letters and
underscore, and must begin with a letter or underscore. C++ is case sensitive as it treats upper and
lower case letters differently. A keyword can not be used as an identifiers. The following are some
valid identifiers:
 Pen time580 s2e2r3 _dos _HJI3_JK

� DataTypes in C++:Data types are means to identify the types of data and associated
operations of handling it. Data types in C++ are of two types:
1. Fundamental or Built-in data types: These data types are already known to compiler. These
are the data types which are not composed of other data types. There are following fundamental data
types in C++:
(i) int data type (for integer) (ii) char data type (for characters)
(iii) float data type (for floating point numbers) (iv) double data type
2. Derived and User defined date types : These data types are made up of fundamental data types

: For example 1)Array 2) Function 3) Reference 4) Constant 5) Pointer 6) Class 7) Enum 8) Union
9) Structure

Data Type Modifiers:There are following four data type modifiers in C++ , which may be used to

modify the fundamental data types to fit various situations more precisely:

(i) signed (ii) unsigned (iii) long (iv) short

� Variables: A named memory location, whose contents can be changed with in program
execution is known as variable. OR
A variable is an identifier that denotes a storage location, whose contents can be varied during
program execution.
Declaration of Variables: Syntax for variable declaration is:
datatype variable_name1, variable_name2, variable_name3,……………. ;
We can also initialize a variable at the time of declaration by using following syntax:
datatype variable_name = value;
When the initial value is given to the variable at the run time it is called dynamic initialization.e.g.
 float avg;
 avg = sum/count;

then above two statements can be combined in to one as follows:
 float avg = sum/count;

� Constant: A named memory location, whose contents cannot be changed within program
execution is known as constant. OR
 A constant is an identifier that denotes a storage location, whose contents cannot be varied
during program execution.
Syntax for constant declaration is:
 const datatype constant_name = value ;
e.g., const float pi = 3.14f ;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

6

� Conditional operator (? :):
The conditional operator (? :) is a ternary operator i.e., it require three operands. The general form of
conditional operator is:
 expression1? expression2: expression3 ;
Where expression1 is a logical expression , which is either true or false.
If expression1 evaluates to true i.e., 1, then the value of whole expression is the value of expression2,
otherwise, the value of the whole expression is the value of expression3. For example
min = a<b? a : b ;
 Here if expression (a<b) is true then the value of a will be assigned to min otherwise value of b will
be assigned to min.
� Type Conversion:The process of converting one predefined data type into another is called type

conversion.

C++ facilitates the type conversion in two forms:
(i) Implicit type conversion:- An implicit type conversion is a conversion performed by the
compiler without programmer’s intervention. An implicit conversion is applied generally whenever
different data types are intermixed in an expression. The C++ compiler converts all operands upto
the data type of the largest data type’s operand, which is called type promotion.
(ii) Explicit type conversion :- An explicit type conversion is user-defined that forces an
expression to be of specific data type.
Type Casting:- The explicit conversion of an operand to a specific type is called type casting.
Type Casting Operator - (type) :-Type casting operators allow you to convert a data item of a
given type to another data type. To do so , the expression or identifier must be preceded by the name
of the desired data type , enclosed in parentheses . i. e.,

(data type) expression
Where data type is a valid C++ data type to which the conversion is to be done. For example , to
make sure that the expression (x+y/2) evaluates to type float , write it as:
 (float) (x+y/2)

� Some important Syntax in C++:
1. if Statement

 if (< conditional expression >)
 {
 < statement-1 or block-1>;
 // statements to be executed when conditional expression is true. }
[else
 {
 < statement-2 or block-2>;
 // statements to be executed when conditional expression is false.
 }]

2. The if-else-if ladder :
 if (<condition -1>)
 statement-1; // do something if condition-1 is satisfied (True)
 else if (<condition – 2 >)
 statement-3 ; // do something if condition -2 is satisfied (True)
 else if (<condition – 3 >)
 statement-3 ; // do something if condition- 3 is satisfied (True)
 :

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

7

 : // many more n-1 else - if ladder may come
 :
 else if(< condition – n >)
 statement-n ; // do something if condition – n is satisfied (True)
 [else
 statement-m ;] // at last do here something when none of the
 // above conditions gets satisfied (True)
 }

3. switch Statement :-
 switch (expression/variable)
{ case value_1: statement -1;
 break;
 case value_2: statement -2;
 break;
 :
 :
 case value_n: statement -n;
 break;
 [default: statement -m;]
}

4. The for Loop:
for(initialization_expression(s); loop_Condition; update_expression (s))
 {
 Body of loop
 }

5. while Loop:

while (loop_condition)
{

Loop_body
}

6. do-while loop:
 do
 { Loop_body
 }while (loop_condition);

���� break Statement :-The break statement enables a program to skip over part of the code. A
break statement terminates the smallest enclosing while, do-while, for or switch statement.
Execution resumes at the statement immediately following the body of the terminated statement.
The following figure explains the working of break statement:

<> in syntax is known as a place holder, it is not a part of syntax, do not type it while writing
program. It only signifies that anything being kept there varies from program to program.

[] is also not a part of syntax , it is used to mark optional part of syntax i.e. all part of syntax
between [] is optional.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

8

The Working of Break Statement

���� continue Statement:- The continue is another jump statement like the break statement as
both the statements skip over a part of the code. But the continue statement is somewhat different
from break. Instead of forcing termination, it forces the next iteration of the loop to take place,
skipping any code in between. The following figure explains the working of continue statement:

The Working of Continue Statement

���� Functions :-Function is a named group of programming statements which perform a specific
task and return a value.
1. Built-in Functions (Library Functions) :- The functions, which are already defined in C++

Library (in any header files) and a user can directly use these function without giving their
definition is known as built-in or library functions. e.g., sqrt(), toupper(), isdigit() etc.

Following are some important Header files and useful functions within them :

stdio.h (standard I/O function) gets() , puts()

ctype.h (character type function) isalnum() , isalpha(), isdigit (), islower (),
isupper (), tolower (), toupper()

string.h (string related function) strcpy (), strcat (), strlen(), strcmp() ,
strcmpi() , strrev(),strupr() , strlwr()

math.h (mathematical function) fabs (), pow (), sqrt (), sin (), cos (), abs ()

stdlib.h randomize (), random ()

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

randomize() : This function provides the
in generating random numbers. The seed value may be taken from current system’s time.
random(<int>) : This function accepts an integer parameter say x and then generates a random
value between 0 to x-1.
for example : random(7) will generate numbers between 0 to 6.
To generate random numbers between a lower and upper limit we can use following formula

 random(U – L +1) + L
 where U and L are the Upper limit and Lower limit values between which we
random values.
For example : If we want to find random numbers between 10 to 100 then we have to write code as:
 random(100 -10 +1) + 10 ; // generates random number between 10 to 100
2. User-defined function :- The functions which are

known as user-defined function. For using a user
and then using.

Declaration of user-defined Function:
Return_type function_name(List of formal parameters)

 {
 Body of the function
 }
Calling a Function:- When a function is called then a list of actual parameters is supplied that
should match with formal parameter list in number, type and order of arguments.
Syntax for calling a function is:
function_name (list of actual parameters);
e.g.,
#include <iostream.h>
 int addition (int a, int b)
{ int r;
 r=a+b;
return (r); }
void main ()
{ int z ;
 z = addition (5,3);
cout<< "The result is " << z;
 }
The result is 8

Call by Value (Passing by value)

copies the value of actual parameters into the formal parameters , that is, the function creates its own
copy of argument values and then use them, hence any chan
will not reflect on actual parameters . The above given program is an example of call by value.
Call by Reference (Passing by Reference)

mechanism. In place of passing
variable is passed . This means that in call by reference method, the called function does not create
its own copy of original values , rather, its refers to the original values only by diffe
reference . Thus the called function works
original values.
// passing parameters by reference

#include <iostream.h>
 void duplicate (int& a, int

9

This function provides the seed value and an algorithm to help random() function
in generating random numbers. The seed value may be taken from current system’s time.

This function accepts an integer parameter say x and then generates a random

for example : random(7) will generate numbers between 0 to 6.
To generate random numbers between a lower and upper limit we can use following formula

where U and L are the Upper limit and Lower limit values between which we want to find out

For example : If we want to find random numbers between 10 to 100 then we have to write code as:
10 +1) + 10 ; // generates random number between 10 to 100

The functions which are defined by user for a specific purpose is
defined function. For using a user-defined function it is required, first define it

defined Function:
Return_type function_name(List of formal parameters)

When a function is called then a list of actual parameters is supplied that
should match with formal parameter list in number, type and order of arguments.

function_name (list of actual parameters);

by Value (Passing by value) :- The call by value method of passing arguments to a function
copies the value of actual parameters into the formal parameters , that is, the function creates its own
copy of argument values and then use them, hence any chance made in the parameters in function
will not reflect on actual parameters . The above given program is an example of call by value.
Call by Reference (Passing by Reference) :- The call by reference method uses a different
mechanism. In place of passing value to the function being called , a reference to the original
variable is passed . This means that in call by reference method, the called function does not create
its own copy of original values , rather, its refers to the original values only by diffe

hus the called function works on the original data and any changes are reflected to the

// passing parameters by reference

int& b, int& c)

seed value and an algorithm to help random() function

in generating random numbers. The seed value may be taken from current system’s time.
This function accepts an integer parameter say x and then generates a random

To generate random numbers between a lower and upper limit we can use following formula

want to find out

For example : If we want to find random numbers between 10 to 100 then we have to write code as:
10 +1) + 10 ; // generates random number between 10 to 100

defined by user for a specific purpose is
defined function it is required, first define it

When a function is called then a list of actual parameters is supplied that
should match with formal parameter list in number, type and order of arguments.

The call by value method of passing arguments to a function
copies the value of actual parameters into the formal parameters , that is, the function creates its own

ce made in the parameters in function
will not reflect on actual parameters . The above given program is an example of call by value.

The call by reference method uses a different
value to the function being called , a reference to the original

variable is passed . This means that in call by reference method, the called function does not create
its own copy of original values , rather, its refers to the original values only by different names i.e.,

the original data and any changes are reflected to the

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

 {
 a*=2;
 b*=2;
 c*=2;
 }

 void main ()

 {
 int x=1, y=3, z=7;
 duplicate (x, y, z);
 cout <<"x="<< x <<
 }
output :x=2, y=6, z=14
The ampersand (&)operator specifies that their corresponding arguments are to be passed
reference instead of by value.
Constant Arguments:-In C++ the value of constant argument cannot be changed by the function.
To make an argument constant to a function , we can use the keyword const as shown below:
 int myFunction(const int x , const int b);
The qualifier const tell the compiler that the function should not modify the argument. The compiler
will generate an error when this condition is violated.

Default Arguments :- C++ allows us to assign default value(s) to a function’s parameter(s) which
is useful in case a matching argument is not passed in the function call statement. The default values
are specified at the time of function definition
 float interest (float principal, int time, float rate = 0.70f)
Here if we call this function as:
 si_int= interest(5600,4);
then rate =0.7 will be used in function.

Formal Parameters:- The parameters that appear in function definition are formal parameters.

Actual Parameters :- The parameters that appears in a function

Functions with no return type (The use of void):

specifier for the function. This is a special specifier that indicates absence of type.
The return Statement :- The execution
and control passes back to the calling function (or, in case of the main(), transfer control back to the
operating system). The return statement also returns a value to the calling function. Th
return statement is:
 return (value);

� Scope of Identifier :-The part of program in which an identifier can be accessed is known as

scope of that identifier. There are four kinds of scopes in C++

(i) Local Scope :- An identifier declare in a b
only in it.
(ii) Function Scope :- The identifier declare in the outermost block of a function
argument list, have function scope.

10

x=1, y=3, z=7;
duplicate (x, y, z);

<< x <<", y="<< y <<", z="<< z;

specifies that their corresponding arguments are to be passed

In C++ the value of constant argument cannot be changed by the function.
To make an argument constant to a function , we can use the keyword const as shown below:

int myFunction(const int x , const int b);
const tell the compiler that the function should not modify the argument. The compiler

will generate an error when this condition is violated.

C++ allows us to assign default value(s) to a function’s parameter(s) which
case a matching argument is not passed in the function call statement. The default values

are specified at the time of function definition from right most parameter to left ones. e.g.,
float interest (float principal, int time, float rate = 0.70f)

The parameters that appear in function definition are formal parameters.

The parameters that appears in a function call statement are actual parameters.

Functions with no return type (The use of void):- In this case we should use the void type
specifier for the function. This is a special specifier that indicates absence of type.

The execution of return statement, it immediately exit from the function
and control passes back to the calling function (or, in case of the main(), transfer control back to the
operating system). The return statement also returns a value to the calling function. The syntax of

The part of program in which an identifier can be accessed is known as

scope of that identifier. There are four kinds of scopes in C++

An identifier declare in a block ({ }) is local to that block and can be used

The identifier declare in the outermost block of a function

specifies that their corresponding arguments are to be passed by

In C++ the value of constant argument cannot be changed by the function.
To make an argument constant to a function , we can use the keyword const as shown below:

const tell the compiler that the function should not modify the argument. The compiler

C++ allows us to assign default value(s) to a function’s parameter(s) which
case a matching argument is not passed in the function call statement. The default values

. e.g.,

The parameters that appear in function definition are formal parameters.

call statement are actual parameters.

In this case we should use the void type

of return statement, it immediately exit from the function
and control passes back to the calling function (or, in case of the main(), transfer control back to the

e syntax of

The part of program in which an identifier can be accessed is known as

lock ({ }) is local to that block and can be used

The identifier declare in the outermost block of a function or in its

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

11

(iii) File Scope (Global Scope) :- An identifier has file scope or global scope if it is declared
outside all blocks i.e., it can be used in all blocks and functions.
(iv) Class Scope :- A name of the class member has class scope and is local to its class.

� Lifetime :The time interval for which a particular identifier or data value lives in the memory
is called Lifetime of the identifier or data value.

� Arrays:

Declaration of One-Dimentional Array:-
 Data_type Array_name[size];
Working with One Dimentional Array:-

General form of for loop for Reading
elements of array (1-D)

Generally processing
part may be include
within the loop of
reading or printing,
otherwise a same type
separate loop may be
used for processing

General form of for loop for
printing elements of array (1-D)

for (int i=0; i< size; i++)
{
 cout<<”Enter Array Element “<<i+1;
 cin>>Array_Name[i];
}

for (int i=0; i< size; i++)
{
 cout<<Array_Name[i]<< “, “;
}

Declaration of 2-D array:-
 Data_type Array_name [R][C] ;
Where R represent number of rows and C represent number of columns in array.

Working With Two-Dimentional Array:-

General form of for loop for Reading
elements of 2-D array

Generally processing
part may be include
within the loop of
reading or printing,
otherwise a same type
separate nested loop
may be used for
processing

General form of for loop for
printing elements of 2-D array

for (int i=0; i< R; i++)
{ cout<<”Enter Row “<<i+1;
 for (int j=0; j<C ; j++)
 cin>>Array_Name[i][j];
}

for (int i=0; i< R; i++)
{ for (int j=0; j<C ; j++)
 cout<<Array_Name[i][j]
<<’\t’;
 cout<<’\n’;
}

Where R represent number of rows and C represent number of columns in array.

� Defining Structure :-
 struct< Name of Structure >
 {
 <datatype>< data-member 1>;
 <datatype>< data-member 2>;
 <datatype>< data-member 3>;
 …
 …
 <datatype>< data-member n>;
 } ;
Declaring Structure Variable :-
 struct< Name of Structure >
 {
 <datatype>< data-member 1>;
 <datatype>< data-member 2>;

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

12

 <datatype>< data-member 3>;
 …
 …
 <datatype>< data-member n>;
 } var1, var2,….., varn ;
We can declare the structure type variables separately (after defining of structure) using following
syntax:
 Structure_name var1, var2, …… ….., var_n;
Accessing Structure Elements :- To access structure element , dot operator is used. It is denoted by
(.). The general form of accessing structure element is :
Structure_Variable_Name.element_name

� Pointer:- Pointer is a variable that holds a memory address of another variable of same type.
Declaration and Initialization of Pointers :
Syntax :
Datatype *variable_name;
e.g., int *p; float *p1; char *c;
Two special unary operator * and & are used with pointers. The & is a unary operator that returns the
memory address of its operand.
e.g., int a = 10; int *p; p = &a;
Pointer arithmetic: Two arithmetic operations, addition and subtraction, may be performed on
pointers. When you add 1 to a pointer, you are actually adding the size of whatever the pointer is
pointing at. That is, each time a pointer is incremented by 1, it points to the memory location of the
next element of its base type.

e.g. int *p; p++;
If current address of p is 1000, then p++ statement will increase p to 1002, not 1001.
Adding 1 to a pointer actually adds the size of pointer’s base type.
Base address : A pointer holds the address of the very first memory location of array where it is
pointing to. The address of the first memory location of array is known as BASE ADDRESS.
Dynamic Allocation Operators :C++ dynamic allocation operatorsallocate memory from the free
store/heap/pool, the pool of unallocated heap memory provided to the program. C++ defines two
operators new and delete that perform the task of allocating and freeing memory during runtime.
Pointers and Arrays :C++ treats the name of an array as constant pointer which contains base
address i.e address of first memory location of array.

� typedef :- The typedef keyword allows to create alias(alternate name) for data types. the syntax
is:

typedef existing_data_type new_name ;
 e.g. typedef int num;

� #define Preprocessor Directive:The # define directive creates symbolic constant,
constants that are represent as macros.

 Macros:Macros are preprocessor directive created using # define that serve as symbolic
constants. They are created to simplify and reduce the amount of repetitive coding
e.g.1
#define PI 3.14
Here PI is defined as a macro. It will replace 3.14 in place of PI throughout the program.
e.g. 2
#define max (a, b) a>b? a: b
Defines the macro max, taking two arguments a and b. This macro may be called like any

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

13

function. Therefore, after preprocessing
A = max(x, y);
Becomes A = x>y?x :y ;

� Function Overloading:Function overloading is the process of defining and using functions
with same name having different argument list and/or different return types. These functions are
differentiated during the calling process by the number, order and types of arguments passed to
these functions.

 Example:
 int Add (int ,int) ;
 double Add (double ,double) ;
 float Add (int ,float) ;

Short Answer Type Questions (2-Marks)

1. Define Macro with suitable example.
2. Explain in brief the purpose of function prototype with the help of a suitable example.
3. What is the role of typedef? Can it be used to create new data type?
4. What is the difference between Object Oriented Programming and Procedural

Programming?
5. What is the difference between Global Variable and Local Variable? Also, give a suitable

C++ code to illustrate both.
6. Differentiate between ordinary function and member functions in C++. Explain with an

example.
7. What is the difference between call by reference and call by value with respect to memory

allocation? Give a suitable example to illustrate using C++ code.
8. What is the difference between actual and formal parameter ? Give a suitable example to

illustrate using a C++ code.
9. Differentiate between a Logical Error and Syntax Error. Also give suitable examples of each

in C++.
10. Find the correct identifiers out of the following, which can be used for naming variable,

constants or functions in a C++ program :
While, for, Float, new, 2ndName, A%B, Amount2, _Counter

11. Out of the following, find those identifiers, which cannot be used for naming Variable,
Constants or Functions in a C++ program :

_Cost, Price*Qty, float, Switch, Address One, Delete, Number12, do
12. Find the correct identifiers out of the following, which can be used for naming Variable,

Constants or Functions in a C++ program :
For, while, INT, NeW, delete, 1stName, Add+Subtract, name1

Very Short Answer Type Questions (1-Mark Based on Header Files)

1. Which C++ header file (s) will be included to run /execute the following C++ code?

void main()
{ int Last =26.5698742658;
cout<<setw(5)<<setprecision(9)<<Last; }

2. Name the header files that shall be needed for successful compilation of the following C++
code :

 void main()
{ char str[20],str[20];

Ans: iostream.h, iomanip.h

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

14

 gets(str);
 strcpy(str1,str);
 strrev(str);
 puts(str);
 puts(str1); }

3. Write the names of the header files to which the following belong:
(i) strcmp() (ii) fabs()

4. Write the names of the header files to which the following belong:
(i) frexp() (ii) isalnum()

Short Answer Type Questions (2-MarksError Finding)

1. Rewrite the following program after removing any syntactical errors. Underline each

correction made.
#include<iostream.h>
void main()
int A[10];
A=[3,2,5,4,7,9,10];
for(p = 0; p<=6; p++)
{ if(A[p]%2=0)
int S = S+A[p]; }
cout<<S;
 }

2. Deepa has just started working as a programmer in STAR SOFTWARE company. In the
company she has got her first assignment to be done using a C++ function to find the smallest
number out of a given set of numbers stored in a one-dimensional array. But she has committed some
logical mistakes while writing the code and is not getting the desired result. Rewrite the correct code
underlining the corrections done. Do not add any additional statements in the corrected code

 int find(int a[],int n)
{ int s=a[0];
 for(int x=1;x<n;x++)
 if(a[x]>s)
 a[x]=s;
return(s); }

3. Rewrite the following program after removing the syntactical errors (if any). Underline each
correction.

#include [iostream.h]
class PAYITNOW
{ int Charge;
PUBLIC:
 void Raise(){cin>>Charge;}

 void Show{cout<<Charge;}
};
void main()
{
PAYITNOW P;
P.Raise();
Show();
}

Ans :- #include<iostream.h>

void main()

{int A[10] = {3,2,5,4,7,9,10};

int S = 0,p;

for(p = 0; p<=6; p++)

{ if(A[p]%2==0)

S = S+A[p]; }

cout<<S;}

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

15

4. Rewrite the following program after removing the syntactical errors (if any). Underline each
correction.

#include <iostream.h>
struct Pixels
{ int Color,Style;}
void ShowPoint(Pixels P)
{ cout<<P.Color,P.Style<<endl;}
void main()
{
 Pixels Point1=(5,3);
 ShowPoint(Point1);

Pixels Point2=Point1;
 Color.Point1+=2;

ShowPoint(Point2);
}

Short Answer Type Questions (2-MarksFinding Output)

2. Find the output of the following C++

program:

#include<iostream.h>

void repch(char s[])

{

for (int i=0;s[i]!='\0';i++)

{
if((i%2)!=0) &&(s[i]!=s[i+1]))

{

s[i]='@';

}

else if (s[i]==s[i+1])

{

s[i+1]='!';
} } }

void main()

{

char str[]="SUCCESS";

cout<<”Original String”<<str;

repch(str);

cout<<"Changed String"<<str;}

Ans: Original String SUCCESS

Changed String S@C@ES!

1. Find output of the following program

segment :

#include<iostream.h>
#include<ctype.h>

void Mycode(char Msg[],char CH)

{ for(int cnt=0;Msg[cnt]!=‘\0’;cnt++)

{ if(Msg[cnt]>=‘B’&& Msg[cnt]<=‘G’)

Msg[cnt]=tolower(Msg[cnt]);

else

if(Msg[cnt]==‘N’||Msg[cnt]==‘n’||Msg[cnt]==‘ ’)

Msg[cnt]=CH;
else

if(cnt%2==0)

Msg[cnt]=toupper(Msg[cnt]);

else

Msg[cnt]=Msg[cnt–1]; } }

void main()

{ char MyText[]="Input Raw";
Mycode(MyText,‘@’);

cout<<"NEW TEXT:"<<MyText<<endl;

}

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

16

Application Based Questions (3 Marks Finding Output)

3. Find the output of the following program:

#include <iostream.h>

#include <ctype.h>

void Encrypt(char T[])

{

for (int i=0;T[i]!='\0';i+=2)

if (T[i]=='A' || T[i]=='E') T[i]='#';

 else if (islower(T[i])) T[i]=toupper(T[i]);

 else T[i]='@';
}

void main()

{

char Text[]="SaVE EArtH";

//The two words in the string Text

//are separated by single space

Encrypt(Text);
cout<<Text<<endl;
}

4. Find the output of the following program:

#include <iostream.h>

struct Game

{
char Magic[20];

int Score;

};

void main()

{

 Game M={“Tiger”,500};

 char *Choice;
 Choice=M.Magic;

 Choice[4]=’P’;

 Choice[2]=’L’;

 M.Score+=50;

 cout<<M.Magic<<M.Score<<endl;

Game N=M;

 N.Magic[0]=’A’;N.Magic[3]=’J’;

 N.Score-=120;

 cout<<N.Magic<<N.Score<<endl;

}

1. Find the output of the following :

#include<iostream.h>

void switchover(int A[],int N, int split)

{

for(int K = 0; K<N; K++)

if(K<split)
A[K] += K;

else

A[K]*= K; }

void display(int A[] ,int N)

{

for(int K = 0; K<N; K++)

(K%2== 0) ?cout<<A[K]<<"%" : cout<<A[K]<<endl;

}
void main()

{ int H[] = {30,40,50,20,10,5};

switchover(H,6,3);

display(H,6); }

Ans : 30%41

52%60

40%25

2. Find the output of the following program :

#include<iostream.h>

void in(int x,int y, int &z)

{ x+=y;
 y- -;

z*=(x–y);

 }

void out(int z,int y, int &x)

{ x*=y;

y++;

z/=(x+y);
 }

void main()

{ int a=20, b=30, c=10;

 out(a,c,b);

cout<<a<<"#"<<b<<"#"<<c<<"#"<<endl;

in(b,c,a);

cout<<a<<"@"<<b<<"@"<<c<<"@"<<endl;

out(a,b,c);
cout<<a<<"$"<<b<<"$"<<c<<"$"<<endl; }

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

17

5 Find the output of the following program:

#include <iostream.h>
 struct GAME

{ int Score, Bonus;};
void Play(GAME &g, int N=10)
{ g.Score++;g.Bonus+=N; }
 void main()

 { GAME G={110,50};
Play(G,10);
cout<<G.Score<<":"<<G.Bonus<<endl;
Play(G);
cout<<G.Score<<":"<<G.Bonus<<endl;
Play(G,15);
cout<<G.Score<<":"<<G.Bonus<<endl; }

Application Based Questions(2 Marks Based on random function)

1. Observe the following C++ code and find out , which out of the given options i) to iv) are the
expected correct output. Also assign the maximum and minimum value that can be assigned to
the variable ‘Go’.
void main()
{ int X [4] ={100,75,10,125};
int Go = random(2)+2;
for (int i = Go; i< 4; i++)
cout<<X[i]<<”$$”;
}

Ans :

(iv)is the correct option.
Minimum value of Go = 2

Maximum value of Go = 3

3. Find the output of the following program:
#include <iostream.h>

struct PLAY

{ int Score, Bonus;};

void Calculate(PLAY &P, int N=10)

{

 P.Score++;P.Bonus+=N;

}

void main()
{

 PLAY PL={10,15};

 Calculate(PL,5);

 cout<<PL.Score<<”:”<<PL.Bonus<<endl;

 Calculate(PL);

 cout<<PL.Score<<”:”<<PL.Bonus<<endl;

 Calculate(PL,15);
 cout<<PL.Score<<”:”<<PL.Bonus<<endl;

}

4. Find the output of the following program:

#include <iostream.h>

void Changethecontent(int Arr[], int Count)

{

for (int C=1;C<Count;C++)

Arr[C-1]+=Arr[C];

}

void main()

{

int A[]={3,4,5},B[]={10,20,30,40},C[]={900,1200};

Changethecontent(A,3);
Changethecontent(B,4);

Changethecontent(C,2);

for (int L=0;L<3;L++) cout<<A[L]<<’#’;

 cout<<endl;

for (L=0;L<4;L++) cout<<B[L] <<’#’;

 cout<<endl;

for (L=0;L<2;L++) cout<<C[L] <<’#’;

 }

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

18

(i) 100$$75 (ii) 75$$10$$125$$ (iii) 75$$10$$ (iv)10$$125$
2. In the following program, if the value of N given by the user is 15, what maximum and minimum
values the program could possibly display?

#include <iostream.h>
#include <stdlib.h>
void main()
{
 int N,Guessme;
 randomize();
 cin>>N;
 Guessme=random(N)+10;
 cout<<Guessme<<endl;
}

3. In the following program, if the value of N given by the user is 20, what maximum and minimum
values the program could possibly display?

#include <iostream.h>
#include <stdlib.h>
void main()
{
 int N,Guessnum;
 randomize();
 cin>>N;
 Guessnum=random(N-10)+10;
 cout<<Guessnum<<endl;
}

4. Read the following C++ code carefully and find out, which out of the given options (i) to (iv) are
the expected correct output(s) of it. Also, write the maximum and minimum value that can be
assigned to the variable Taker used in the code :

 void main()
{ int GuessMe[4]={100,50,200,20};
int Taker=random(2)+2;
for (int Chance=0;Chance<Taker;Chance++)
cout<<GuessMe[Chance]<<”#”; }

 (i) 100# (ii) 50#200# (iii) 100#50#200# (iv) 100#50

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

