UNIT-2 DATA STRUCTURES

I
|
In Computer Science,d@ata structureis a particular way of storing and organizing data in a computer sb
that it can be used efficiently. Different kinds of data structuaes suited to different kinds of i

|
call during execution of a program, while B-trees are partigulestll-suited for implementation of |
databases. The data structure can be classified into following two types: !
Simple Data Structure: These data structures are normally built from primitive datastyige integers, |
floats, characters. For example arrays and structure. !
Compound Data Structure: simple data structures can be combined in various ways to form mad
complex structure called compound structures. Linked Lists, Stack, Qandefrees are examples o
compound data structure.

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

: Data Structure Arrays

I Data structure array is defined as linear sequence of finitberaf objects of same type with following
I set of operation:

I » Creating : defining an array of required size
I * Insertion: addition of a new data element in the in the array
i * Deletion: removal of a data element from the array
! » Searching: searching for the specified data from the array
! » Traversing: processing all the data elements of the array
! » Sorting : arranging data elements of the array in increasing or degyeader
: * Merging : combining elements of two similar types of arrays to form a newy afisame type
! In C++ an array can be defined as

I Datatype arrayname([size];

| Where size defines the maximum number of elements can be hold in the array. fdeexam
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

!

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float b[10];//b is an array which can store maximum 10 float values !

int c[5]; !

Array initialization !
void main() |
(|
int b[10]={3,5,7,8,9};// |
cout<<b[4]<<endl; :
cout<<b[5]<<endl; :
} I
Output is I
9 |
0 |
In the above example the statement int b[10]={3,5,7,8,9} assigns fekndents with the given values I
and the rest elements are initialized with 0. Since in C++ index @frray starts from 0 to size-1 so the]
expression b[4] denotes th& Blement of the array which is 9 and b[5] denotBse@ment which is |
initialized with 0. !
' 3[s5[7[8f]9f]ofJofofofo] :
b[0] b[1] b[2] b[3] b[4] b[S] b[6] b[7] b[8] b[9] |
|

|

|

|

|

|

|

|

|

|

|

|

|

!

Sear ching

We can use two different search algorithms for searching a specifiratatan array
* Linear search algorithm
* Binary search algorithm

|
Linear search algorithm I
In Linear search, each element of the array is compared withitka item to be searched for. This I
method continues until the searched item is found or the last item is compared. I
#include<iostream.h> !
int linear_search(int af], int size, int item) !
{ I
int i=0; :
while(i<size&& a[i]'=item) I
i++; I
if(i<size) I
return i;//returns the index number of the item in the array I
else I
return -1;//given item is not present in the array so it returns -1 sincaet aslegal index number |

) |
void main() !
I

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

{
int b[8]={2,4,5,7,8,9,12,15},size=8;

int item;
cout<<’enter a number to be searched for”;
cin>>jtem;
int p=linear_search(b, size, item); //search item in the array b
if(p==-1)
cout<<item<<” is not present in the array”’<<endl;
else
cout<<item <<” is present in the array at index no “<<p;
}

In linear search algorithm, if the searched item is tfs¢ élements of the array then the loop terminates
after the first comparison (best case), if the searchedigétre last element of the array then the loop]
terminates after size time comparison (worst case) and fettiehed item is middle element of the array!
then the loop terminates after size/2 time comparisons (average cadajgésize array linear search not |
an efficient algorithm but it can be used for unsorted array also.

Binary search algorithm
Binary search algorithm is applicable for already sortedyaonly. In this algorithm, to search for the
given item from the sorted array (in ascending order), theigammpared with the middle element of the |
array. If the middle element is equal to the item then indekeofmiddle element is returned, otherwise, if |
item is less than the middle item then the item is preseiitsi half segment of the array (i.e. between 0]
to middle-1), so the next iteration will continue for first half orifythe item is larger than the middle |
element then the item is present in second half of the dreaypétween middle+1 to size-1), so the next]
iteration will continue for second half segment of the array only.sEmee process continues until either |
the item is found (search successful) or the segment is retutieel single element and still the item is !
not found (search unsuccessful). :
#include<iostream.h> I
int binary_search(int a[], int size, int item) !
{ I
int first=0,last=size-1,middle; I
while(first<=last) |
I
|
|
|
|
|
|
|

{
middle=(first+last)/2;

if(item==a[middle])

return middle; // item is found
else if(item< a[middle])

last=middle-1; //item is present in left side of the middle element
else

}

return -1; //given item is not present in the array, here, -1 indicates unsiutsesirch

}

void main()

first=middle+1; // item is present in right side of the middle element

{
int b[8]={2,4,5,7,8,9,12,15},size=8;

int item;
cout<<’enter a number to be searched for”;
cin>>item;
int p=binary_search(b, size, item); //search item in the array b
if(p==-1)
cout<<item<<” is not present in the array”<<endl;
else
cout<<iem <<” is present in the array at index no “<<p;
}

Let us see how this algorithm work for item=12
Initializing first =0 ; last=size-1; where size=8

Iteration 1
Al0] a[1] [2] a[3] a[4] a[5] a[6] a[7]
' 2 | 4| 5] 7 | 8] 9 |12] 15|
fist mideIe Ialt
First=0, last=7

middle=(first+last)/2=(0+7)/2=3 // note integer division 3.5 becomes 3
value of a[middle] i.e. a[3] is 7
7<12 then first= middle+1 i.e. 3+ 1 =4

iteration 2
Al4] a[5] a[6] a[7]
| 8 | 9 | 12| 15|
T first middle last
first=4, last=7
middle=(first+last)/2=(4+7)/2=5
value of a[middle] i.e. a[5] is 9
9<12 then first=middle+1;5+1=6
iteration 3
a[6] a[7]
| 12 | 15 |
first middle last
first=6,last=7

middle=(first+last)/2 = (6+7)/2=6

value of a[middle] i.e. a[6] is 12 which is equal to the value of item being search i.e.12
As a successful search the function binary_search() will retutretmain function with value 6 as

index of 12 in the given array. In main function p hold the return index number.

Note that each iteration of the algorithm divides the given amr&y two equal segments and the only one
segment is compared for the search of the given item in theéteeation. For a given array of size N2 2
elements, maximum n number of iterations are required to makevketber the given item is present in
the given array or not, where as the linear requires maxinunur@ber of iteration. For example, the
number of iteration required to search an item in the given arraQQtf elements, binary search requires
maximum 10 (as 10829 iterations where as linear search requires maximum 1000 iterations.

Inserting a new element in an array
We can insert a new element in an array in two ways
» If the array is unordered, the new element is inserted at the end of the array

« If the array is sorted then the new element is added at appeopaasition without altering the
order. To achieve this, all elements greater than the new elameshifted. For example, to add

10 in the given array below:
al0] a[l] [2] a[3] a[4] a[5] a[6] a[7] a[8]
| 2 4|5 | 7] 8]11]12]15] |
Original array
al0] a[l] [2] a[3] a[4] a[5] a[6] a[7] alg]
| 2] 4] 5| 7] 8] | 11| 12 | 15 |
Elements greater than 10 shifted to create free place to insert 10
al0] a[l] [2] a[3] a[4] a[5] a[6] a[7] alg]
|2 4] 5| 7|8]10]11]12] 15|
Array after insertion
Following program implement insertion operation for sorted array

#include<iostream.h>
void insert(int a[], int &n, int item) //n is the number of elements alreadeptas the array

int i=n-1;
while (i>=0 && a[i]>item)
{
afi+1]=a[i]; // shift the " element one position towards right
i--;
}
a[i+1]=item; //insertion of item at appropriate place
n++; //after insertion, number of elements present in the array is incrga%ed b
}
void main()
{int a[10]={2,4,5,7,8,11,12,15},n=8;
int i=0;
cout<<“Original array is:\n”;
for(i=0;i<n;i++)
couts<ali]<<”,
insert(a,n,10);
cout<<”’\nArray after inserting 10 isi\;

for(i=0; i<n; i++)
cout<<ali]<<”,
}

Output is

Original array is:
2,4,5,7,8,11,12, 15
Array after inserting 10 is:
2,4,5,7,8,10, 11, 12, 15

Deletion of an item from a sorted array

In this algorithm the item to be deleted from the sorted agagarched and if the item is found in the
array then the element is removed and the rest of the elemerdbified one position toward left in the
array to keep the ordered array undisturbed. Deletion operation redaaasmber of elements present in

the array byl. For example, to remove 11 from the given array below:
a[0] a[l] [2] a[3] a[4] a[5] a[6] a[7]
| 2| 4] 5|7 | 8]11]12] 15|
Original array
a[0] a[l] [2] a[3] a[4] a[5] a[6] a[7]
l2[4als5|7]8] [12][15]
Element removed
al0] a[l] [2] a[3] a[4] a[5] a[6] a[7]
2[4l 5]7]8[]12[15] |
Array after shifting the rest element
Following program implement deletion operation for sorted array
#include<iostream.h>
void delete_item(int a[], int &n, int item) //n is the number of elementsdrpeesent in the array
{int i=0;
while(i<n && afi]<item)

i++;
if (a[i]==item) // given item is found
{while (i<n)
{a[i]=a[i+1]; // shift the (i+1jh element one position towards left
i++;
}
cout<<”\n Given item is successfully deleted”;
}
else
cout<<”\n Given item is not found in the array”;
n--;
}
void main()
{int a[10]={2,4,5,7,8,11,12,15},n=8;
int i=0;

couk<“Original array is :\n”;
for(i=0;i<n;i++)

couts<alil<<”,
delete_item(a,n,11);
cout<<”\nArray after deleting 11 isi\;

for(i=0; i<n; i++)
cout<<ali]<<”,
}

Output is

Original array is:
2,4,5,7,8,11,12, 15

Given item is successfully deleted
Array after deleting 11 is:
2,4,5,7,8,12,15

Traversal
Processing of all elements (i.e. from first element to akse é¢lement) present in one-dimensional array i
called traversal. For example, printing all elements of aayafinding sum of all elements present in an
array.
#include<iostream.h>
void print_array(int @[], int n) //n is the number of elements present in the array
{inti;
cout<<”\n Given array is i\’;
for(i=0; i<n; i++)
cout<<ali]<<”,
}

int sum(int a[], int n)
{inti,5=0;
for(i=0; i<n; i++)
s=s+a]il;
return s;
}
void main()
{int b[10]={3,5,6,2,8,4,1,12,25,13},n=10;
inti, s;
print_array(b,n);
s=sum(b,n);
cout<<”\n Sum of all elements of the given array is : ”<<s;
}
Output is
Given array is
3,56,2,8,4,1,12, 25, 13
Sum of all elements of the given array is : 79

o S

Sorting
The process of arranging the array elements in increassiogr(ding) or decreasing (descending) order i
|
|
|
|
|
|
|

known as sorting. There are several sorting techniques are awalablselection sort, insertion sort,
bubble sort, quick sort, heap short etc. But in CBSE syllabus onlyisalsott, insertion sort, bubble sort
are specified.

Selection Sort

The basic idea of a selection sort is to repeatedly selecinhbest element in the remaining unsorted |
array and exchange the selected smallest element with rdteefement of the unsorted array. For |
example, consider the following unsorted array to be sorted using selection sort

Original array
3 4 5 6

12
| 5[9[3]16] 47|

0
8

iteration 1 : Select the smallest element from unsorted arrayhvii®8 and exchange 3 with the first
element of the unsorted array i.e. exchange 3 with 8. After iterhtibe element 3 is at its
final position in the array.
0 1 2 3 4 5 6
3|5 98 16[4 7|
Iteration 2: The second pass identify 4 as the smallest element and then eXchéhdge

0 1 2 3 4 5 6
' 3] 4o 8]16]5] 7|
Iteration 3: The third pass identify 5 as the smallest element and then exchang® 5 with
0 1 2 3 4 5 6
' 3]l 4[5[8]16] 07|
Iteration 4. The third pass identify 7 as the smallest element and then exchang@& 7 with
0 1 2 3 4 5 6
' 3l 4f5]7[16]0][8]
Iteration 5: The third pass identify 8 as the smallest element and then exchangé&@® with
0 1 2 3 4 5 6
' 3l4af[5]7]8[0]16]
Iteration 6: The third pass identify 9 as the smallest elementh@mdeixchange 9 with 9 which makes

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
I
! no effect.
I 0 1 2 3 4 5 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

' 3/ 4/5|7[8]|9]16]
The unsorted array with only one element i.e. 16 is already @ppt®priate position so no more iteration |
is required. Hence to sort n numbers, the number of iterations recgiimel] where in each next iteration, |

the number of comparison required to find the smallest element isades by 1 as in each pass one}
|

element is selected from the unsorted part of the array and mbtlesl end of sorted part of the array .
For n=7 the total number of comparison required is calculated as

Passl: 6 comparisons i.e. (n-1)

Pass2: 5 comparisons i.e. (n-2)

Pass3: 4 comparisons i.e. (n-3)

Pass4: 3 comparisons i.e. (n-4)

Pass5: 2 comparisons i.e. (n-5)

Pass6: 1 comparison i.e. (n-6)=(n-(n-1))

Total comparison for n=(n-1)+(n-2)+@®+ +(n-(n-1))= n(n-1)/2

7=6+5+4+3+2+1=7*6/2=21,;
Note: For given array of n elements, selection sort alwaysugsea(n-1)/2 comparison statements |
irrespective of whether the input array is already sorted(@®st), partially sorted(average case) or
totally unsorted(i.e. in reverse order)(worst case).
#include<iostream.h>

|

|

|

void select_sort(int a[], int n) //n is the number of elements present in the array !
{inti, j, p, small; !
for(i=0;i<n-1;i++) I
{small=a[i]; // initialize small with the first element of unsorted pafrthe array :

p=i; /Il keep index of the smallest number of unsorted part of the array in p :

I

|

|

|

for(j=i+1; j<n; j++) //loop for selecting the smallest element form uresbérray
{if(a[j]<small)
{small=al[j];
p=i;

}! end of inner loop----------
[]-mmmmee exchange the smallest element witfelement-------------
a[p]=alil;
ali]l=small;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
}/lend of function I
void main() !
{int a[7]={8,5,9,3,16,4,7},n=7,i; !
cout<<”\n Original array is 1\’; !
for(i=0;i<n;i++) :
cout<<alil]<<”, :
select_sort(a,n); !
cout<<’\nThe sorted array is¥; !
for(i=0; i<n; i++) !
cout<<ali]<<”, I

} |
Output is !
Original array is I
8,5,9,3,16,4,7 I
The sorted array is !
3,4,5,7,8,9, 16 |
I

|

|

|

|

|

|

|

Insertion Sort

Insertion sort algorithm divides the array of n elements in tostiparts, the first subpart contain a[0] to
a[k] elements in sorted order and the second subpart contain a[kaft]] tahich are to be sorted. The
algorithm starts with only first element in the sorted subparausee array of one element is itself in
sorted order. In each pass, the first element of the unsorted subpamaved and is inserted at the |
appropriate position in the sorted array so that the sorted amaynrén sorted order and hence in eachi
pass the size of the sorted subpart is increased by 1 and sizsoofed subpart is decreased by 1. This|
process continues until all n-1 elements of the unsorted arrayssarted at their appropriate position in |
the sorted array. i
For example, consider the following unsorted array to be sorted using selection sort
Original array

0 1 2 3 4 5 6
8 [5 [9 [3 [16 4 | 7]
Sorted unsorted

Initially the sorted subpart contains only one element i.e. 8 and theethsatipart contains n-1 elements
where n is the number of elements in the given array.

Iterationl: To insert first element of the unsorted subpart i.e. Zhetsorted subpart, 5 is compared
with all elements of the sorted subpart starting from rightretesnent to the leftmost
element whose value is greater than 5, shift all elements gbtted subpart whose value
is greater than 5 one position towards right to create an emgtg pk the appropriate

position in the sorted array, store 5 at the created empty plaee8hsill move from
position a[0] to a[1] and a[0] is filled by 5. After first pass the status of thy &

0 1 2 3 4 5 6
5 | 8 [o[316 4 7|
Sorted unsorted
Iteration2: In second pass 9 is the first element of the unsorted subpacompared with 8, since 8

is less than 9 so no shifting takes place and the comparing loapdersa So the element
9 is added at the rightmost end of the sorted subpart. After secamdhpastatus of the

array is:
0 1 2 3 4 5 6
| 5 | 8 | 9 | 3 16 4 7]
Sorted unsorted

Iteration3: in third pass 3 is compared with 9, 8 and 5 and shift them ori®mpaswards right and
insert 3 at position a[0]. After third pass the status of the array is:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 [5 [8 [o [T16] a4 | 7 | i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0 1 2 3 4 5 6
Sorted unsorted
Iteration4: in forth pass 16 is greater than the largest numbbke aiorted subpart so it remains at the
same position in the array. After fourth pass the status of the array is:
0 1 2 3 4 5 6
. 3 | 5 | 8 [9 |16 [4 7|
Iteration5: in fifth pass 4 is inserted after 3. After third pass the status ofdlyasa
0 1 2 3 4 5 6
. 3 | 4 15 | 8 | 9o | 16| 7]
Sorted unsorted
Iteration6: in sixth pass 7 is inserted after 5. After fifth pass the status aifrehyeis:
0 1 2 3 4 5 6
. 3 | 4 | 5 [7] 8 | 9 | 16 |
Sorted

Insertion sort take advantage of sorted(best case) or pad@iled(average case) array because if all
elements are at their right place then in each pass only orgadean is required to make sure that the|
element is at its right position. So for n=7 only 6 (i.e. n-1) fikena are required and in each iteration only |
one comparison is required i.e. total number of comparisons requireb=rwhich is better than the |
selection sort (for sorted array selection sort required rghegmparisons). Therefore insertion sort is |
best suited for sorted or partially sorted arrays.

#include<iostream.h>

void insert_sort(int a[],int n) //n is the no of elements present in the array

{inti, j,p;
for (i=1; i<n; i++)
j=1-1;

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I Sorted unsorted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i /linner loop to shift all elements of sorted subpart one position towards right
|
|
|
!

|
|
|
|
|
|
|
|
I
{p=alil; !
|
|
|
|
|
|
|
!

while(j>=0&&alj]>p)

a[j+1]=p; /linsert p in the sorted subpart

{
afj+1]=alil;
-
}
[[--=-=---- end of inner loop
}
}
void main()

{
int a[7]={8,5,9,3,16,4,7},n=7,i;
cout<<”\n Original array is n”;
for(i=0;i<n;i++)
cout<<alil<<”,
insert_sort(a,n);
cout<<”\nThe sorted array isX;
for(i=0; i<n; i++)
cout<<alil<<”,
}

Output is

Original array is
8,593,16,4,7
The sorted array is
3,4,5,7,8,9,16
Bubble Sort

Bubble sort compares a[i] with afi+1] for all i=0..n-2, if a[iicha[i+1] are not in ascending order then |
exchange afi] with afi+1] immediately. After each iteratioheéments which are not at their proper |

position move at least one position towards their right place inrthg. a’he process continues until all !

iteration)

For example, consider the following unsorted array to be sorted using selection sort

Original array

The element a[3] i.e. 9 and a[4] i.e. 16 are in ascending order so no exchange required

|

|

|

|

|

|

|

v I

0 1 2 3 4 5 6 I

. 8 | 5 | 9 [3 | 16| 4 [7 | i
Iterationl: The element a[0] i.e. 8 is compared with a[1] i.e. 5, since 8>5 thereforagex8haith 5. !
v v I

0 1 2 3 4 5 6 I

5 | 8 | 9 [3 [16 a [7] I
The element a[1] i.e. 8 and a[2] i.e. 9 are already in ascending order so no exchaingé re i
y v !

0 1 2 3 4 5 6 |

5 | 8 | 9 | 3 | 16| 4 [7 | I
The element a[2] i.e. 9 and a[3] i.e. 3 are not in ascending order so exchange a[2] with a[3] |
|

|

v v :

0 1 2 3 4 5 6 !

. 5 | 8 | 3] 9 | 16| 4 [7 :
I

|

|

|

!

|
v v I
0 1 2 3 4 5 6 !
. 5 | 8 | 3] 9 |16] 4 [7 | :
The element a[4] i.e. 16 and a[5] i.e. 4 are not in ascending order so exchangehadwit |
0 1 2 3 4 5 6 v v |
. 5 | 8 | 9 [3 | 4 | 16 7 | I
The element a[5] i.e. 16 and a[6] i.e. 7 are not in ascending order so exchange a[5] with a[6}
0 1 2 3 4 5 6
' 5 | 8 | 9 | 3 | 4 | 7 | 16 |

Since in iterationl some elements were exchanged with each otloér stiows that array
was not sorted yet, next iteration continues. The algorithm wititate only if the last
iteration do not process any exchange operation which assurd #latrents of the array
are in proper order.

Iteration2: only exchange operations are shown in each pass

0 1 2V 3v 4 5 6
' 5 | 8 | 9 [3] 4 | 7 | 16 |
O 1 2 3vy 4%y 5 b
| 5 | 8 | 3] 9 | 4 | 7 | 16 |
0 1 2 3 4v 5v 6
' 5 | 8 | 3 [4] 9 | 7 | 16 |
o 1 2 3 4 5 6
| 5 | 8 | 3 | 4 | 7 | 9 | 16 |

required to assure that array is in sorted order.

lteration3;
0 1v 2V 3 4 5 6
0 1 2V 3V 4 5 6
. 5 | 3 [8 | 4 | 7 [9 | 16 |
0 1 2 3V 4v 5 6
. 5 | 3] 4] 8 | 7 [9 | 16 |
o 1 2 3 4 5 6
| 5 | 3] 4] 7 | 8 [9 | 16 |

Iteration4:
ov v 2 3 4 5 6
| 5 [3 [a4 [7 | 8 | 9 | 16 |
0 v 2V 3 4 5 6
| 3 | 5 [4] 7 | 8 [9 | 16|
o 1 2 3 4 5 6
| 3 | 4[5 [7 | 8 | 9 | 16 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I In iteration 2 some exchange operatlons were processed, SO, ainleanbre iteration is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 | 8 | 3 | 4] 7] 9 | 16] i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

Iteration5:
0 1 2 3 4 5 6

' 3 | 4] 5 | 7| 8 | 9 | 16 |

In iteration 5 no exchange operation executed because allreteare already in proper

order therefore the algorithm will terminate aftériration.
Merging of two sorted arraysinto third array in sorted order
Algorithm to merge arrays a[m](sorted in ascending order) angsbjtéd in descending order) into third
array C[n+m] in ascending order.
#include<iostream.h>
Merge(int a[], int m, int b[n], int c[])// m is size of array a and n is the sf array b
{inti=0; // i points to the smallest element of the array a which is at index 0
int j=n-1;// j points to the smallest element of the array b which is ahtiexim-1 since b is

/l sortet in descending order
int k=0; //k points to the first element of the array c
while(i<m&&j>=0)
{if(afil<b[iI)

c[k++]=a[i++]; // copy from array a into array ¢ and then increment i and k

else
c[k++]=b[j--]; // copy from array b into array ¢ and then decrement j and ireareln

}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
I
while(i<m) /[copy all remaining elements of array a I
c[k++]=ali++]; I
while(j>=0) /[copy all remaining elements of array b !
c[k++]=b[j--]; [
} I
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

void main()
{int a[5]={2,4,5,6,7},m=5; //a is in ascending order
int b[6]={15,12,4,3,2,1},n=6; //b is in descending order
int c[11];
merge(a, m, b, n, c);
cout<<”’The merged array is :\n”;
for(int i=0; i<m+n; i++)
cout<<c[i]<”,
}
Output is
The merged array is:
1,2,2,3,4,4,5,6,7,12,15

Two dimensional arrays

In computingyow-major order andcolumn-major order describe methods for storing multidimensional
arrays in linear memory. Following standandtrix notation, rows are identified by the first index of a
two-dimensional array and columns by the second index. Array lagaeritical for correctly passing
arrays between programs written in different languages. Row-majer @ used in C, C++; column-
major order is used in Fortran and MATLAB.

Row-major order

In row-major storage, a multidimensional array in linear merwagcessed such that rows are stored on¢
after the other. When using row-major order, the differenose®et addresses of array cells in increasing|
rows is larger than addresses of cells in increasing columns. For example, dbisized array: !

1 2 3
4 5 6

An array declared in C as
int A[2][3] ={{1, 2, 3}, {4,5, 6} };
would be laid outontiguouslyin linear memory as:

To traverse this array in the order in which it is laid out in mgmame would use the following nested
loop:
for(1=0;1<2;i++)
for(j=0;]<3;j++)
cout<<A[i][j];

The difference in offset from one column to the next is 1*sizeof(tgpel) from one row to the next is
3*sizeof(type). The linear offset from the beginning of the arcagirty given element Afrow][column]
can then be computed as:

offset = row*NUMCOLS + column

Address of A[row][column]base address of A + (row*NUM COL S + column)* sizeof (type)
WhereNUM COL Sis the number of columns in the array.

The above formula only works when using the C, C++ convention of labelirigghelement 0. In other
words, row 1, column 2 in matrix A, would be represented as A[0][1]
Note that this technique generalizes, so a 2x2x2 array looks like:

int A[2][2][2] = {{1,2}, {3,4}}, {{5.6}, {7.8}}};

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
i Address of element A[row][column] can be computed as. i
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: :
! and the array would be laid out in linear memory as: !

| |
i Example 1. i
I For a given array A[10][20] is stored in the memory along the raW @ach of its elements occupying 4 i
| bytes. Calculate address of A[3][5] if the base address of array A is 5000. |
| : . |
I Solution: I
I For given array A[M][N] where M=Number of rows, N =Number of Columns present irrtag a I
I address of A[l][J]= base address+(I * N + J)*sizeof(type) !
! here M=10, N=20, |1=3, J=5, sizeof(type)=4 bytes !
I I
| |
| |
| |
| |
| |
| |
| |
| |
| |
! !

address of A[3][5] =5000+(3*20+5)*4
= 5000 + 65*4=5000+260=5260

Example 2.

An array A[50][20] is stored in the memory along the row with eafchis elements occupying 8 bytes.
Find out the location of A[5][10], if A[4][5] is stored at 4000.

Solution:

| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
: Calculate base address of A i.e. address of A[0][0] :
: For given array A[M][N] where M=Number of rows, N =Number of Columns present irrtag a }
| address of A[l][J]= base address+(I * N + J)*sizeof(type) |
: here M=50, N=20, sizeof(type)=8, =4, J=5 :
! address of A[4][5] = base address + (4*20 +5)*8 !
I 4000 = base address + 85*8 [
I Base address= 4000-85*8= 4000-680=3320 I
! Now to find address of A[5][10] |
I here M=50, N=20, sizeof(type)=8, 1=5, J=10 !
| Address of A[5][10] = base address +(5*20 + 10)*8 !
! =3320 + 110*8 = 3320+880 = 4200 !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

As C, C++ supports n dimensional arrays along the row, the addresdatah formula can be
generalized for n dimensional array as:

For 3 dimentional array A[m][n][p], find address of a[i][j][K]:

Address of a[i][j][k] = base address + ((I*n+j) * p + k) * sizeof(type)

For 4 dimentional array A[m][n][p][q], find address of a[i][j][K][l]:
Address of a[i][j][K][l]] = base address + (((I*n+j)*p+k)*p +1) * sizeofl&y

Column-major order is a similar method of flattening arrays onto linear memory theitcolumns are

listed in sequence. The programming languagetan MATLAB , use column-major ordering. The
array

1 2 3
4 5 6

if storedcontiguouslyin linear memory with column-major order would look like the following:

The memory offset could then be computed as:
offset = row + column*NUMROWS

Address of element A[row][column] can be computed as:

Address of A[row][column]base address of A + (column*NUMROWS +rows)* sizeof (type)
WhereNUM ROWS represents the number of rows in the array in this case, 2.

Treating a row-major array as a column-major array issme as transposing it. Because performing
transpose requires data movement, and is quite difficult tm-glace for non-square matrigesuch
transpositions are rarely performed explicitly. For exangaéware librariedor linear algebrasuch as

theBLAS, typically provide options to specify that certain matricestarbe interpreted in transposed
order to avoid the necessity of data movement

Examplel.

For a given array A[10][20] is stored in the memory along tersn with each of its elements occupying
4 bytes. Calculate address of A[3][5] if the base address of array A is 5000.

Solution:

For given array A[M][N] where M=Number of rows, N =Number of Columns present iarthg

Address of A[l][J]= base address + (J * M + I)*sizeof(type)

here M=10, N=20, I=3, J=5, sizeof(type)=4 bytes

Address of A[3][5] =5000 + (5 * 10 + 3) * 4
= 5000 + 53*4 = 5000+215 =5215

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example2. !
An array A[50][20] is stored in the memory along the column with each of its eteraecupying 8 bytes. I
Find out the location of A[5][10], if A[4][5] is stored at 4000. !
|

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Solution:
Calculate base address of A i.e. address of A[0][0]
For given array A[M][N] where M=Number of rows, N =Number of Columns present irrtag a
address of A[l][J]= base address+(J * M + I)*sizeof(type)
here M=50, N=20, sizeof(type)=8, =4, J=5
address of A[4][5] = base address + (5 * 50 +4)*8

4000 = base address + 254*8

Base address= 4000-55*8= 4000-2032=1968
Now to find address of A[5][10]
here M=50, N=20, sizeof(type)=8, | =5, J=10
Address of A[5][10] = base address +(10*50 + 10)*8

=1968 + 510*8 = 1968+4080 = 6048

4 Marks Questions |
1. Write a function in C++ which accepts an integer array andziésas arguments and replaces elements*i.
having even values with its half and elements having odd values with twice its value
2. Write a function in C++ which accepts an integer array and 2&s & argument and exchanges thel
value of first half side elements with the second half side elements of the arra |
Example: If an array of eight elements has initial conten24,1,6,7,9,23,10. The function should | |
rearrange the array as 7,9,23,10,2,4,1,6.
3. Write a function in c++ to find and display the sum of each rod @ach column of 2 dimensional
array. Use the array and its size as parameters with int as the datattyparray.
4. Write a function in C++, which accepts an integer array andzésas parameters and rearrange thel
array in reverse. Example if an array of five members initially containsi¢neents as 6,7,8,13,9,19 !
Then the function should rearrange the array as 19,9,13,8,7,6 !
5. Write a function in C++, which accept an integer array and iessaszarguments and swap the elements'f
of every even location with its following odd location. Example : ifaaray of nine elements initially I
contains the elements as 2,4,1,6,5,7,9,23,10 Then the function should rearrange yh&asarra
4,2,6,1,7,5,23,9,10 |
6. Write a function in C++ which accepts an integer array and iessaszarguments and replaces elements
having odd values with thrice and elements having even values with iteicalue. Example: If an array
of five elements initially contains the elements 3,4,5,16,9
Then the function should rearrange the content of the array as 9,8,15,32,27

STACKS, QUEUESAND LINKED LIST

|
|
|
|
I
Stack [
In computer science, a stack is a last in, first out (LIB&& structure. A stack can is characterized by I
only two fundamental operationgush andpop. The push operation adds an item to the top of the stack
The pop operation removes an item from the top of the stack, and returns this value terthe cal

nature of the pop and push operations also mean that stack elementsnaawalaorder. Elements are

removed from the stack in the reverse order to the order of their addition: tbetikeéolower elements are

those that have been on the stack the longest. One of the common uses of stack is in function call
s -

Push y (Pop

Stack using array
#include<iostream.h>
const int size=5

class stack

{int a[size]; //array a can store maximum 5 item of type int of the stack

int top; /ltop will point to the last item pushed onto the stack

public:

stack(){top=-1;} /[constructor to create an empty stack, top=-1 indicatethiéém is //present in the

array
void push(int item)
{If(top==size-1)
cout<<stack is full, given item cannot be added”;
else
a[++top]=item; //increment top by 1 then item at new position of the top in theaarray

int pop()
{If (top==-1)
{out<<”Stack is empty *;
return -1; //-1 indicates empty stack
}
else
return aftop--];//return the item present at the top of the stack then decriemdyt 1
}

void main()
{ stack s1;
sl.push(3);
sl.push(5);
cout<<sl.pop()<<endl;
cout<<sl.pop()<<endl;
cout<<sl.pop();

|
Output is]
5 I
3 I
Stack is empty -1 !
In the above program the statemstiack sl creates s1 as an empty stack and the constructor initialize tdp
by -1.

Initially stack is empty stack after s1.push(3) stack after s1.push(5)
4 4
3 4
2 3 3
1 i 2
0 top—» 0 [73 top—>1| 5
top—>-1 0 3

After first s1.pop() statement, the item 5 is removed from the stack and top movedsttydm

4
3
2
1
top —>0| 3

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
I
After second s1.pop() statement, the item 3 is removed from stactogndoves from 0 to -1 which |
indicates that now stack is empty. :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

OFrR,NWAMA

top—>-1
After third s1.pop() statement the pop function display error message “stack is empty” and returns -1 to
indicating that stack is empty and do not change the position of top of the stack.

Linked list

In Computer Science,lenked list (or more clearly, "singly-linked list") is a data structunattconsists of
a sequence of nodes each of which contains data and a pointer which peinéiifk) to the next node
in the sequence.

12| o§->{99| o137 o>

A linked list whose nodes contain two fields: an integer value and a link to the next node

The main benefit of a linked list over a conventional array is tietist elements can easily be added or
removed without reallocation or reorganization of the entire stittecause the data items need not be
stored contiguously in memory or on disk .Stack using linked lists afisgrtion and removal of nodes
only at the position where the pointer top is pointing to.

|

|

|

|

I

Stack implementation using linked list !
#include<iostream.h> !
struct node !
I

|

|

!

int item; //data that will be stored in each node
node * next; //pointer which contains address of another node
}; //node is a self referential structure which contains reference of aruiijest type node

class stack
{node *top;
public:
stack() //constructor to create an empty stack by initializing top with NULL
{top=NULL; }
void push(int item);
int pop();
~stack();
%
void stack::push(int item) //to insert a new node at the top of the stack
{node *t=new node; //dynamic memory allocation for a new object of node type
if(t==NULL)
cout<<”Memory not available, stack is full”;

else
{t->item=item;
t->next=top; //newly created node will point to the last inserted node or NULL if
//stack is empty
top=t; [ltop will point to the newly created node
}
}

int stack::pop()//to delete the last inserted node(which is currently pointée iby)
{if(top==NULL)

{cout<<”Stack is empty \n”;

return O; // O indicating that stack is empty

}

else
{node *t=top; //save the address of top in t
int r=top->item; //store item of the node currently pointed by top
top=top->next; // move top from last node to the second last node
delete t; //remove last node of the stack from memory
returnr;
}

}

stack::~stack() //de-allocated all undeleted nodes of the stack when stackigoescope
{node *t;
while(top!=NULL)

{t=top;
top=top->next;
delete t;
}

h

void main()

{

stack s1;

sl.push(3);

sl.push(b);

sl.push(7);

cout<<sl.pop()<<endl;
cout<<sl.pop()<<endl;
cout<<sl.pop()<<endl;
cout<<sl.pop()<<endl;
}
Output is
7
5
3
Stack is empty 0

In the above program the statemstatk s1; invokes the constructor stack() which create an empty sta
object s1 and initialize top with NULL.

top — 5 NULL
After statement s1.push(3) the stack become

top —» 3 —1 » NULL

After statement s1.push(5) the stack become

top ——» 5 | 4+—»] 3 | |, NULL

top ———» 7 ——» 5 | —}+——>] 3 —+—» NULL

After the first s1.pop() statement the node currently pointed by .sam@de containing 7) is deleted from
the stack, after deletion the status of stack is

top ——» 5 | 4+—»] 3 | -], NULL

After the second sl.pop() statement the node currently pointed biyeopade containing 5) is deleted
from the stack, after deletion the status of stack is

top——» 3 | —}— 5 NuLL

After the third s1.pop() statement the node currently pointed by top (i.e. node can&irsrdeleted from
the stack, after deletion the stack become empty i.e.

Top——» NULL

After the fourth s1.pop() statement, the error message “stack is empty* displayed and the pop() function

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
| After statement s1.push(7) the stack become
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I return O to indicate that stack is empty.
|
|
|
|
|
|
|
|
!

Application of stacksin infix expression to postfix expression conversion

Infix expression operandl operator operand2 for exampleatb

Postfix expression operandl operand2 operator for exampleab+

Prefix expression operator operandl operand2 for exampletab

Some example of infix expression and their corresponding postfix expression

Infix expression postfix expression
a*(b-c)le abc-*e/
(at+b)*(c-d)/e ab+cd-*e/
(atb*c)/(d-e)+f abc*+de-/f+

Algorithm to convert infix expression to postfix expression using stack

Let the infix expression INEXP is to be converted in to equivalent gostipression POSTEXP. The
postfix expression POSTEXP will be constructed from left to right uthiegoperands and operators
(except “(*, and *“)”) from INEXP. The algorithm begins by pushing a left parenthesis onto the empty
stack, adding a right parenthesis at the end of INEXP, and intiglROSTEXP with null. The algorithm
terminates when stack become empty.

The algorithm contains following steps

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: :
I Initialize POSTEXP with null I
: Add)’ at the end of INEXP :
: Create an emptyack and push ‘(‘ on to the stack :
I Initialize i=0,j=0 I
| Do while stack is not empty |
| If INEXPJi] is an operand then |
| POSTEXP[j]=INEXPIi] !
| I=i+1 |
I j=i+1 I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

ouhkwnE

Goto step 5
7. IfINEXP[i]is ‘(‘ then
push (INEXPIi])
i=i+1
Goto step 5
If INEXPJi] is an operator then
While precedence of the operator at the top of the stack > precedence of operator
POSTEXP[j]=pop()
J=j+1
End of while
Push (INEXPIi])
I=i+1
Goto step 5
If INEXP[i] is)’ then
While the operator at thert of the stack is not ‘(°
POSTEXP[j]=pop()
J=j+1
End while
Pop()
10. Endofstep 5
11. End algorithm
For example convert the infix expression (A+B)*(C-D)/E into postfpression showing stack status
after every step.

@

N

Symbol scanned from infix | Stack status (bold lett¢ Postfix expression
shows the top of the stack)
(

(((

A ((A

+ (+ A

B (+ AB

) (AB+

* (* AB+

((*(AB+

C (*(AB+C

- (*(- AB+C

D (*(- AB+CD

) (* AB+CD-

/ (/ AB+CD-*

E (/ AB+CD-*E

) AB+CD-*E/

Answer: Postfix expression ¢A+B)*(C-D)/E is AB+CD-*E/
Evaluation of Postfix expression using Stack

Algorithm to evaluate a postfix expression P.
1. Create an empty stack
2. i=0
3. while P[i] '= NULL
if P[i] is operand then
Push(P[i])
I=i+1
Else if P[i] is a operator then
Operand2=pop()
Operand1=pop()
Push (Operandl operator Operator2)
End if
4. End of while

5. return pop() // return the calculated value which available in the stack.

End of algorithm

Example: Evaluate the following postfix expression showing stack status after every step

8,2+,53,-%*4/

token scanned fron Stack status (bold letter shows the top of| Operation performed

postfix expression stack) after processing the scanned token

8 8 Push 8

2 8,2 Push 2

+ 10 Op2=pop() i.e 2
Opl=pop() i.e 8
Push(opl+op?2)i.e. 8+2

5 10,5 Push(5)

3 10, 5,3 Push(3)

- 10,2 Op2=pop() i.e. 3
Opl=pop() i.e. 5
Push(opl-op2) i.e. 5-3

* 20 Op2=pop() i.e. 2
Opl=pop() i.e. 10
Push(opl-op2) i.e. 10*2

4 20,4 Push 4

/ 5 Op2=pop() i.e. 4
Opl=pop() i.e. 20
Push(opl/op?2) i.e. 20/4

NULL Final result 5 Pop 5 and return 5

Evaluate the following Boolean postfix expression showing stack status aftgistaer
True, False, True, AND, OR, False, NOT, AND

token scannel

Stack status (bold lette

Operation performed

from postfix| shows the top of th
expression stack) after processin
the scanned token
True True Push True
False True,False Push False
True True, FalseTrue Push True
AND True,False Op2=pop() i.e. True
Opl=pop() i.e. False
Push(Op2 AND Opl) i.e. False AN
True=False
OR True Op2=pop() i.e. False
Opl=pop() i.e. True
Push(Op2 OR Opl) i.e. True OR False=Trug
False True,False Push False
NOT True, True Opl=pop() i.e. False
Push(NOT False) i.e. NOT False=True
AND True Op2=pop() i.e. True
Opl=pop() i.e. True
Push(Op2 AND Opl) ie. True AN
True=True
NULL Final resulfTrue Pop True and Return True

UEUE

Queue is a linear data structure which follows First In First BiR®) rule in which a new item is added
at the rear end and deletion of item is from the front end of the greadg~IFO data structure, the first
element added to the queue will be the first one to be removed.

Linear Queue implementation using Array
#include<iostream.h>

const int size=5;

class queue

{int front , rear;

int a[size];

public:

gueue(){front=0;rear=0;} /Constructor to create an empty queue

void addQ()
{ if(rear==size)

cout<<’queue is full<<endl;
else

}
int delQ()

{if(front==rear)
{cout<<”queue is empty”’<<endl; return 0;}

a[rear++]=item;

else

1

void main()

{queue q1;

gl.addQ(3);

q1.addQ(5) ;
gl.addQ(7) ;
cout<<qgl.delQ()<<endl ;
cout<<qgl.delQ()<<endl ;
cout<<qgl.delQ()<<endl;
cout<<qgl.delQ()<<endl;
}

Output is

3

5

7

Queue is empty 0

return affront++];

In the above program the statemegueue g1 creates an empty queue q1.

Front
\ 4

al0] a[l] a[2] a[3] a[4]

A
Rear

After execution of the statemeqt.addQ(3), status of queue is
Front
[0] a[l] a[2] a[3] a[4]
ENN
4
Rear
After execution of the statemeqt.addQ(5), status of queue is
Front
v
al0] a[l] a[2] a[3] a[4]
3 /s [1 |
A
Rear
After execution of the statemeqt.addQ(7), status of queue is
Fiont

al0] a[l] a[2] a[3] a[4]
(3 15 /7 | | |
Rear
After execution of the first cout<d.delQ() statement3 is deleted from queue status of queue is
Front
v
al0] a[l] a[2] a[3] a[4]
BEs (7 [[|
Rear
After execution of the second coutxkdelQ() statement5 is deleted from the queue status of queue is
Front
v
al0] a[l] a[2] a[3] a[4]
slsl7] | |
Rear
After execution of the third cout<d.delQ() statement7 is deleted from the queue. The status of queue i
empty Front
v
a[0] a[l] a[2] a[3] A[4]
3[5[7] |
Rear
After execution of the fourth couted.delQ() statement the message “queue is empty* displayed and
status of queue is Front
v
a[0] a[l] a[2] a[3] a[4]
ss e L [
Rear
Note that since rear and front moves only in one direction therefme the rear cross the last element of|
the array(i.e. rear==size) then even after deleting some elementuef theefree spaces available in queue|
cannot be allocated again and the function delQ() disptay message “queue is full”. !

_—________—_—_—________-6’9____________—_—_—________—_—_—___________—_—_—_—_—_—_—_—_—_—_—_—_—_—.

Queue using linked list

#include<iostream.h>
struct node{
int item;
node *next;};
class queue
{node *front, *rear;
public:
queue() {front=NULL; rear=NULL,;}//constructor to create empty queue
void addQ(int item);
int delQ();};
void queue::addQ(int item)
{node * t=new node,;
if(t==NULL)

cout<<’memory not available, queue is full’<<endl;
else

{t->item=item;

t->next=NULL;

if (rear==NULL) //if the queue is empty

{rear=t; front=t; //rear and front both will point to the first node

}

{rear->next=t;
rear=t;

} 1
int queue::delQ()

else

{
if(front==NULL)

cout<<”’queue is empty”’<<return 0;
else

{node *t=front;

int r=t->item;

front=front->next; //move front to the next node of the queue

if(front==NULL)

rear==NULL,
delete t;
return r;

}

void main(){

queue q1;

gl.addQ(3);

q1.addQ(5) ;
gl.addQ(7) ;
cout<<qgl.delQ()<<endl ;
cout<<qgl.delQ()<<endl ;
cout<<qgl.delQ()<<endl;
cout<<qgl.delQ()<<endl;

|
Output is]
3 I
5 I
7 !
Queueisempty O !
In the above program the statemepieue g1; invokes the constructor queue() which create an empty
gueue object q1 and initialize front and rear with NULL.

front

T oL

rear
After statement gl.addQ(3) the stack become

front

3 | —}— % NuLL

T

rear

After statement gl.addQ(5) the stack become

iront

3 ——-I S | ——— NULL
—*

rear
After statement gl.addQ(7) the stack become
lront
3| 44— 5 |——» +—» NULL

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
rgar :
After the first gl.delQ() statement the node currently pointeddt {i.e. node containing 3) is deleted :
from the queue, after deletion the status of queue is }
front I
v |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

!

5

\4

7 —— NULL
t rear
After the second gl.delQ() statement the node currently pointed byifeomode containing 5) is deleted
from the queue, after deletion the status of queue is
+front

NULL
7 4—

Ly

re
After the third ql.delQ() statement the node currently pointeddy {i.e. node containing 7) is deleted
from the queue, after deletion the queue become empty therefore NWikassigned to both rear and
front

Front=rear= NULL ;
After the fourth q1.delQ() statement, the error message “queue is empty* displayed and the pop() function
return O to indicate that queue is empty.

Circular queue using array

Circular queues overcome the problem of unutilised space in linearegumplemented as array. In
circular queue using array the rear and front moves in a circle from 0,1,2...size-1,0, and so on.
#include<iostream.h>
const int size=4,
class Cqueue
{int a[size];
int front,rear,anyitem;
public:
void Cqueue(){front=0;rear=0;anyitem=0;}
void addCQ(int item);
int delCQ();
3
void Cqueue::addCQ(int item){
if(front==rear && anyitem>0)

cout<<’Cqueue is full”’<<end]l;

else
{a[rear]=item;
rear=(rear+1)%size; //rear will move in circular order
anyitem++; //value of the anyitem contains no of items present in the queue

1
int Cqueue::delCQ(){
if(front==rear&& anyitem==0)
cout<<”’Cqueue is empty”’<<endl; return O; //O indicate that Cqueue is empty
else
{int r=a[front];
front=(front+1)/size;
anyitem--;
1
void main()
{Cqueue q1;
gl.addCQ(3);
gl.addCQ(5) ;
cout<<gl.delCQ()<<endl ;
gl.addCQ(7) ;
cout<<gl.delCQ()<<endl;
gl.addCQ(8) ;
gl.addCQ(9);
cout<<qgl.delCQ()<<endl;
cout<<qgl.delCQ()<<endl;

}
Output is

o0 ~No1w

2.3 & 4 MarksPractice Questions

1. Convert the following infix expressions to postfix expressions using stack 2
A+(B*C)"D-(E/F-G)

A*B/C*D" "E*G/H

((A*B)-((C_D)*E/F)*G

wn e

2. Evaluate the following postfix expression E given below; show the contents of the stagklaeir
evaluation
1. E=5,9+2,/,4,1,1,3, *+ 2
2. E=80,35,20,-,25,5,+,-*
3. E=30,5,22,12,6,/,+,-
4. E=15,3,2,+,/,7,+2,*

3. An array A[40][10] is stored in the memory along the column with elchemt occupying 4 bytes.
Find out the address of the location A[3][6] if the location A[30][10] is stored at thesxl8000. 3

4 Define functions in C++ to perform a PUSH and POP operation in andgally allocated stack
considering the following : 4
struct Node
{int X,Y;
Node *Link; };
class STACK
{ Node * Top;
public:
STACK() { TOP=NULL;}
void PUSH();
void POP();
~STACK();
h
5. Write a function in C++ to perform a Add and Delete operation in andigadly allocated Queue
considering the following: 4
struct node
{ int empno ;char name[20] ;float sal ;
Node *Link;
3

