Unit - 15

POLYMERS

Points to Remember

- 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers.
- 2. In presence of an organic peroxide initiator, the alkenes and their derivatives undergo addition polymerisation or chain growth polymerisation through a free radical mechanism. Polythene, teflon, orlon etc. are formed by addition polymerisation of an appropriate alkene or its derivative.
- 3. Condensation polymerisation reactions are shown by the addition of bior poly functional monomers containing $-NH_2$, -OH and -COOH groups. This type of polymerisation proceeds through the elimination of certain simple molecules such as H_2O , NH_3 etc.
- 4. Formaldehyde reacts with phenol and melamine to form the corresponding condensation polymer products. The condensation polymerisation progresses through step by step and is called also step growth polymerisation.
- 5. Nylon, bakelite and dacron are some of the important examples of condensation polymers.
- 6. A condensation of two different unsaturated monomers exhibits copolymerisation. A copolymer like Buna-S contains multiple units of 1, 3-Butadiene and styrene.
- 7. Natural rubber is cis-1, 4-polyisoprene. It can be made more tough by the process of vulcanization with sulphur.
- 8. Synthetic rubbers like Buna-N are usually obtained by copolymerisation of alkene and 1, 3-Butadiene derivatives.
- In view of potential environmental hazards of synthetic polymeric wastes, certain biodegradable polymers such as PHBV and Nylon-2-Nylon-6 are developed as alternatives.

QUESTIONS

VSA TYPE QUESTIONS (1-MARK QUESTIONS)

- 1. Define the term copolymer.
- 2. Identify homopolymer from the following examples Nylon-66, Nylon-6, Nylon- 2-Nylon-6.
- 3. Give example of a natural polyamide which is an important constituent of diet.

[Hint: Proteins]

- 4. Classify polythene and bakelite as thermosetting plastics or thermoplastics.
- 5. Among fibres, elastomers and thermosetting polymers, which one has strongest intermolecular forces of attraction?
- 6. Why is bakelite called a thermosetting polymer.
- 7. Give the monomers of bakelite.
- 8. Identify the monomer in the following polymeric structure.

- 9. Nylon-2-Nylon-6 is a biodegradable polymer obtained from glycine, H_2N-CH_2-COOH and aminocaproic acid, $H_2N-(CH_2)_5-COOH$. Write the structure of this polymer.
- 10. Give two uses of teflon.
- 11. Name the polymer used for making insulation material for coating copper wire. [Hint: PVC].
- 12. Write the name and structure of monomer of the polymer which is used as synthetic wool.
- 13. How is vulcanized rubber obtained?
- 14. Name the polymer used for making radio television cabinets and feeding bottles of children.
- 15. What do the digits 6 and 66 represent in the names nylon-6 and nylon-66?
- Write the full form of PHBV.

Downloaded from www.studiestoday.com

- 17. Which of the following sets has all polymers capable of repeatedly softening on heating and hardening on cooling?
 - (i) Glyptal, Melamine, PAN.
 - (ii) PVC, Polystyrene, polythene.
 - (iii) Polypropylene, urea formaldehyde resin, teflon.
- *18. Why benzoyl peroxide is used as an initiator for chain growth polymerisation?

 [Hint: It easily generates free radicals required for initiation of reaction.]

SA (I) TYPE QUESTIONS (2-MARK QUESTIONS)

- 1. Give the structure of monomer of neoprene. What is the advantage of neoprene over the natural rubber?
- 2. Classify the following as homopolymer or copolymer. Also classify them as addition or condensation polymers.
 - (i) $-(NH CH (R) CO)_n-$

(ii)
$$-(CH_2 - CH = CH - CH_2 - CH - CH_2)_n$$

 C_2H_5

- 3. Give the mechanism of polymerisation of ethene to polythene in presence of benzoyl peroxide.
- 4. Complete the following reactions:

- 5. (i) What is the difference between step growth polymer and chain growth polymer?
 - (ii) Give one example of each type.

Downloaded from www.studiestoday.com

- 6. How can you differentiate between thermosetting and thermoplastic polymers.
- 7. Mention the type of intermolecular forces present in nylon-66. What properties do they impart to nylon?

[Hint: Strong intermolecular forces of attraction like Hydrogen bonding. This results in close packing of chains and thus impart crystalline nature to the fibres.]

- 8. What is the difference between linear chain and branched chain polymers. Explain giving examples.
- 9. Identify the polymer whose structure are given and mention one of their important use.
 - (i) $\{CO-(CH_2)_5-NH\}_n$

(ii)
$$-(CH_2-CH)_{n-1}$$

- 10. Arrange the following polymers in the order of increasing intermolecular forces :
 - (i) Nylon-6,6, Buna-S, Polythene.
 - (ii) Nylon-6, Neoprene, Polyvinylchloride
- 11. Write the expanded form and give the structures of monomers for the following polymers:
 - (i) PAN

- (ii) PTFE
- 12. Novolac is the linear polymer which on heating with formaldehyde forms cross-linked bakelite. Write the structures of monomers and the polymer novolac.
- 13. Write the structure of following polymers and also give their main uses :
 - (a) Polystyrene
- (ii) Melamine formaldehyde resin.
- 14. Identify the polymers used in the manufacture of paints and lacquers. Write the structure of the polymer and its monomers.
- 15. Can a copolymer be formed by both addition and condensation polymerisation? Explain with the help of examples.

Downloaded from www.studiestoday.com

- 16. What is the difference between an elastomer and a fibre? Give one example of each.
- 17. Write the structure of the monomers used in the synthesis of :
 - (i) Nylon-6

(ii) Nylon-6, 6

SA (II) TYPE QUESTIONS (3-MARK QUESTIONS)

- 1. Differentiate between the following pairs :
 - (i) Branched chain polymers and cross linked polymers.
 - (ii) Thermoplastic and thermosetting polymers.
 - (iii) Chain growth and step growth polymerisation.
- 2. List two uses each of the following polymers:
 - (i) Nylon-2-Nylon-6.
- (ii) Urea-formaldehyde resin

- (iii) Glyptal
- 3. (i) What is meant by biodegradabhle polymers?
 - (ii) A biodegradable polymer is used in speciality packaging, orthopaedic devices and in controlled release of drugs. Identify the polymer and give its structure.
- 4. Write the name and formula of the following polymers.
 - (a) Nylon 5, 6
- (b) Nylon 6

(c) PHBV

(d) Terylene

(e) Buna-S

(f) Bakelite