The p- block elements : TYPE- MLL

One Mark questions

- 1. Why is H_3PO_3 diprotic?
- 2. Nitrogen does not form pentahalide like phosphorous, why?
- 3. H_2O is a liquid while H_2s is a gas ,why?
- 4. Arrange NH₃ PH₃ AsH₃ BiH₃ SbH₃ in the increasing order of basic strength.
- 5. Oxygen is a gas while sulphur is a solid, why?
- 6. Write the formula of hyponitros acid.
- 7. Why does Al not react with conc.nitricacid?
- 8. Can PCl₅ act as an oxidising agent and reducing agent?
- 9. Why does NO₂ readily dimerise?
- 10. Why is BiH₃ the strongest reducing agent amongst all the hydrides of nitrogen family?
- 11. Write the chemical formula of peroxodisulphuric acid.
- 12. Why does NH_3 act as a Lewis base /complexing agent?
- 13. What is the basicity of H_3PO_4 ?
- 14. Why does $R_3P = O$ exist but $R_3N = O$ does not (R = alkyl group)?
- 15. Why does the reactivity of nitrogen differ from phosphorus?
- 16. Why is white phosphorous highly reactive?
- 17. Why group 16 members are called chalcogens?
- 18. OF_4 is not known but SF_4 is known .Explain
- 19. Solid PCl₅ exists as an ionic solid, Why?
- 20. Bismuth is a strong oxidizing agent in pentavalentstate, why?

Two Marks questions

- 21. Draw the shapes of SF₄, BrF₃ on the basis of VSEPR theory.
- 22. (a) Why is atomic radius of Argon more than that of Chlorine?
 - (b) Why is ionization enthalpy of Nitrogen more than oxygen?
- 23. (a) Arrange F_2 , Cl_2 , Br_2 , l_2 in the increasing order of bond dissociation energy.
 - (b) Arrange HOClO,HOClO₂,HOClO₃ in the increasing order of acidic strength.
- 24. Explain giving suitable reasons:
 - (i) NH₃ has higher boiling point than PH₃
 - (ii) SbF_5 is known but BiF_5 is unknown.

- 25. Explain giving suitable reasons:
- (i) SF₆ is well known but SH₆ is not known.
- (ii) Proton affinity of NH₃ is more than PH₃.
 - 26. Explain giving suitable reasons.
 - (i) Sulphur in vapour form is paramagnetic in nature.
 - (ii) Catenation properties of Phosphorous is more than Nitrogen.
 - 27. Give chemical equations, when:
 - (a). Ammonium dichromate is heated?
 - (b). Sodium azide is heated?
 - 28. Complete the following equations:
- (i) $HgCl_2 + PH_3 \longrightarrow$
- (ii) P_4 + NaOH + H_2O
 - 29. Write main differences between the properties of white phosphorus and red phosphorus.
- 30. Arrange H₂O,H₂S,H₂Se, H₂Te in the increasing order of (i) Acidic Character (ii) Thermal stability.

Three Marks questions

- 31. (i) Why is ICl more reactive than I_2 ?
 - (ii) Interhalogen compounds are strong Oxidizing agents ,why?
 - (iii) Bleaching of flowers by Cl₂ is permanent while SO₂ is temporary, why?
- 32. Give Reasons:
 - (a) Iodine is more soluble in KI solution than in water.
 - (b) HF is stored in wax -coated bottle.
 - © HCl is not used to make the medium acidic in titrations involving KMnO₄.
- 33. Explain giving suitable reasons:
 - (i) SbF_5 is known but BiF_5 is unknown.
 - (ii) CN ion is known but CP is not.
 - (iii) Compounds of Noble gases are known with Xe and fluorine.
- 34. Explain giving suitable reasons:
 - (i) PH₃ has lower boiling point than NH₃.
 - (ii) Nitric oxide becomes brown when released in air.
 - (iii) When HCl reacts with finely powered iron, it forms ferrous chloride and not ferric chloride.
- 35. (i) Which Xe compound has distorted octahedral shape?
 - (ii) How does Chlorine react with hot and concentrated NaOH?
 - (iii) Write the chemical reaction involved in the ring test.
- 36. (a) Are all the bonds in PCl₅ equivalent in length?
 - (b) On the basis of structure show that H₃PO₂ is a good reducing agent.
 - © How many P-OH bonds are present in Pyrophosphoric acid?
- 37. Complete the following equations:
 - $P_4 + SOCl_2$
 - NH_3 + $CuSO_4(aq)$
 - $XeF_4 + H_2O$ \longrightarrow

- 38. (i) Arrange M-F,M-Cl,M-Br,M-I in the increasing order of ionic character.
 - (ii) Arrange HF,HCl,HBr,HI in the increasing order of reducing behavior.
 - (iii) Arrange F₂, Cl₂, Br₂, I₂ in the increasing order of bond dissociation energy.
- 39. Starting from sulphur ,how would you manufacture H₂SO₄ by contact process.
- **40.**Write the reaction involved in formation of ammonia by Habers process?State the favorable conditions for good yield of ammonia .

Five Marks questions

- **41.**A gas "X" is soluble in water . Its aq. Solution turns red litmus blue with excess of aq. $CuSO_4$ solution it gives deep blue colour and with $FeCl_3$ solution a brownish ppt. soluble in HNO_3 is obtained. *Identify* gas"X" and write reactions for changes observed .
- **42.** Write the reaction involved in formation of Nitric acid by Osrwald's process? State the favorable conditions for good yield of Nitric oxide.
- 43. Complete the following equations:
- (I) XeF₄ + H₂O (ii) XeF₆ + PF₅ (iii) Cl₂ + F₂ (excess) (iv) HgCl₂ + PH₃ (v) SO₃ + H₂SO₄
- **44.**A translucent white waxy solid 'A' on heating in an inert atmosphere is converted in to its allotropic form (B). Allotrope 'A' on reaction with very dilute aqueous KOH liberates a highly poisonous gas 'C' having rotten fish smell. With excess of chlorine 'A' forms 'D' which hydrolysis to compound 'E'. Identify compounds 'A' to 'E'.
- **45.** What happens when Concentrated H₂SO₄ is added to/ Give the reactions of H₂SO₄ with(i) calcium fluoride (ii) KCl, (iii) Sugar (iv) Cu turnings.(v) Sulphur

ANSWER KEY The p-block elements

Type: MLL

Q.N.	Answer
1	Two ionisable hydrogen
2	Absence of d-orbitals in nitrogen.
3	H-bonding in H₂O
4	NH ₃ >PH ₃ >AsH ₃ >SbH ₃ >BiH ₃
5	Absence of pπ- pπ bonding in oxygen.
6	HNO₂
7	Formation of passive oxide film
8	No, can act as oxidizing agent only.

9	To pair up odd electron.	
10	Low bond dissociation enthalpy.	
11	$H_2S_2O_8$	
12	It can donate lone pair of electrons very easily.	
13	3	ST
13		5
14	Presence of d-orbitals in phosphorous.	
15	Absence of d-orbitals ,H-bonding, tendency to form multiple bond.	Y
16	Strained structure.	
17	Ore forming nature.	
18	Absence of d-orbitals in oxygen.	
19	It exists as [PCI ₄] ⁺ [PCI ₆] ⁻ in solid state.	
20	Inert pair effect.	
21	SF ₄ (See saw) BrF ₃ (T-shape) Draw yourself	
22	(a) Ar (Vander waal's radius) Cl(Covalent radius) The magnitude of $V_r > C_r$	
	(b) Half-filled configuration shown by nitrogen.	
23	(a) $Cl_2 > Br_2 > F_2 > l_2$	
	(b) HOCIO ₃ >HOCIO ₂ >HOCIO	
24	(a) H- bonding in ammonia	
25	(b) Inert pair effect shown by Bi.	
25	(a) The enthalpy of atomization of H—H is very high as compared to F—F. High enthalpy of dissociation cannot be compensated by energy released	
	during bond formation .	
20	(b) High electronegativity of nitrogen.	
26	(a) In vapour form sulphur behaves like O ₂ .	
27	(b) Phosphorous is unable to form multiple bonds. (a) (NH ₄) ₂ Cr ₂ O ₇ → N ₂ + Cr ₂ O ₃ + 4 H ₂ O	
21	(a) $(NH_4)_2CI_2O_7$ $N_2 + CI_2O_3 + 4H_2O$ (b) $2NaN_3$ \rightarrow $2Na + 3N_2$	
28	(a) $3 \text{HgCl}_2 + 2 \text{PH}_3 \longrightarrow \text{Hg}_3 \text{P}_2 + 6 \text{HCl}$	
20		
29	(b) P ₄ + 3 NaOH + 3H ₂ O PH ₃ + 3NaH ₂ PO ₂ White Phosphorous: Stained structure, Highly reactive, Insoluble in water	
29	writte Phosphorous. Stained structure, riighly reactive, insoluble in water	
14	Red Phosphorous : Stable structure, Less reactive, soluble in water	
30	Acidic Character : H ₂ O < H ₂ S < H ₂ Se < H ₂ Te	

148	
	Thermal stability: $H_2Te < H_2Se < H_2S < H_2O$
	·
31	(a) I-Cl bond is more polar than I-I bond.
	(b) Low bond dissociation enthalpy of X-Y bond.(c) Cl₂ bleach the colour by oxidation while SO₂ by Reduction.
32	(a) Formation of KI ₃ complex.
	(b) HF reacts with silica frequently.
	(c) HCl can oxidise into Cl ₂ .
33	(a) Due to Inert pair effect BiF ₅ is not known.
	(b) Phosphorous is unable to form multiple bonds.
34	(c) Low ionisation enthalpy of Xe and high electronegativity of F.(a) Absence of hydrogen bonding in PH₃.
	(b) Due to formation of NO ₂ .
	(c) Fe on reaction with HCl forms H ₂ which hinder the formation of FeCl ₃ .
35	(a) XeF ₆
	(b) $3Cl_2$ + Hot and Conc. $6NaOH$ NaClO ₃ +5 NaCl + $3H_2O$
	(c) $NO_3^- + Fe^{2+} + 5 H_2O$ [Fe(H ₂ O) ₅ NO] ²⁺
36	(a) No,axial bonds are slightly longer than equatorial bonds.
	(b) H ₃ PO ₂ has one P-H bond .
37	(c) 4 (a) $P_4 + 8SOCl_2 \longrightarrow 4SO_2 + 4PCl_3 + 2S_2Cl_2$
	(b) $4NH_3 + CuSO_4(aq)$ \longrightarrow [Cu(NH ₃) ₄]SO ₄
	(c) $6XeF_4 + 12H_2O$ \longrightarrow $2XeO_3 + 24HF + 4Xe + O_2$
38	(a) M-I <m-br< m-cl<="" m-f<="" th=""></m-br<>
	(b) HF <hcl<hbr<hi< th=""></hcl<hbr<hi<>
	(c) I ₂ <f<sub>2< Br₂<cl<sub>2</cl<sub></f<sub>
39	(a) $S + O_2 \longrightarrow SO_2(g)$
	(b) 2SO₂+ O₂ 2SO₃ [In presence of V₂O₅catalyst]
	(c) $SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$
40	(d) H ₂ S ₂ O _{7 +} H ₂ O 2 H ₂ SO ₄
40	N ₂ + 3H ₂ 2NH ₃ (g)[In presence of Fe/Mo] Low temperature ,High Pressure
41	$X = NH_3$
41	A - INFI3
	$4NH_3 + CuSO_4(aq) \longrightarrow [Cu(NH_3)_4]SO_4$
	$3NH_3 + 3H_2O + FeCl_3 \longrightarrow Fe(OH)_3 + 3NH_4Cl$
	Brown ppt
	Brown ρρε
42	$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$
10	
\mathcal{L}_{l}	$2NO + O_2 \longrightarrow 2NO_2$
	$3NO_2 + H_2O \longrightarrow 2HNO_3 + NO$
	2111103 1 110
-	

149

43	(a) $6XeF_4 + 12H_2O$ \longrightarrow $2XeO_3 + 24HF + 4Xe + O_2$ (b) $XeF_6 + PF_5$ \longrightarrow $[XeF_5]^+[PF_6]^-$ © $Cl_2 + 3F_2$ (excess) \longrightarrow $2CIF3$	
	(d) $3HgCl_2 + 2PH_3 \longrightarrow Hg_3P_2 + 6HCI$	
	(e) $SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$	
44	A=White P ₄	35
	B= Red P ₄	N.S.
	C= PH ₃	
	D=PCl ₅	
	E= H ₃ PO ₄	
45	CaF ₂ + Conc. H ₂ SO ₄ → CaSO ₄ + 2HF	
	2KCl+ Conc. H ₂ SO ₄	
	$C_{12}H_{22}O_{11} + Conc. H_2SO_4 \longrightarrow 12 C + 11H_2O$	
	Cu + Conc. 2 H_2SO_4 Cu SO_4 + SO_2 + $2H_2O$	
	3S + Conc. 2 H ₂ SO ₄ → 3SO ₂ + 2H ₂ O	