#### Unit - 4

### **CHEMICAL KINETICS**

#### **VSA QUESTIONS (1 - MARK QUESTIONS)**

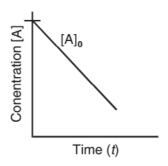
- 1. Define the term 'rate of reaction'.
- 2. Mention the units of rate of reaction.
- 3. Express the rate of reaction in terms of Br(aq) as reactant and  $Br_2(aq)$  as product for the reaction :

5 Br<sup>-</sup>(aq) + Br(aq) + 6H<sup>+</sup> (aq) 
$$\rightarrow$$
 3 Br<sub>2</sub>(aq) + 3H<sub>2</sub>O(/)

4. For a chemical reaction represented by  $R \to P$  the rate of reaction is denoted by

$$\frac{-\Delta[R]}{\Delta t}$$
 or  $\frac{+\Delta[P]}{\Delta t}$ 

Why a positive sign (+) is placed before  $\frac{\Delta[P]}{\Delta t}$  and negative sign (-)


before 
$$\frac{\Delta[R]}{\Delta t}$$
 ?

5. Express the rate of reaction in terms of disappearance of hydrogen and appearance of ammonia in the given reaction.

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

- 6. Why rate of reaction does not remain constant throughout?
- 7. Write the unit of first order rate constant of a gaseous reaction if the partial pressure of gaseous reactant is given in bar.
- 8. For a zero order reaction:

 $\mathsf{R}\to\mathsf{P},$  the change in concentration of reactant w.r.t. time is shown by following graph.



- 9. What will be the order of reaction, if the rate of reaction does not depend on the concentration of any of the reactant.
- 10. For the elementary step of a chemical reaction :

$$H_2 + I_2 \rightarrow 2HI$$
  
rate of reaction  $\alpha$  [H<sub>2</sub>] [I<sub>2</sub>]

What is the (i) molecularity and (ii) order of the reaction.

[**Ans.**: (i) 2 (ii) 1]

- 11. For a chemical reaction A B. The rate of the reaction is given as Rate = k [A]<sup>n</sup>, the rate of the above reaction quadruples when the concentration of A is doubled. What is the value of n? [Ans.: n = 2]
- 12 Mention one example of zero order reaction.
- 13. What is the value of the order of reaction of radioactive decay?

[Ans.: First order]

\*14. Express the relation between the half life period of a reactant and initial concentration for a reaction of n<sup>th</sup> order.

[Ans : 
$$t_{1/2} \alpha \frac{1}{[A]_0^{n-1}}$$

- \*15. A reaction is 50% complete in 2 hours and 75% complete in 4 hours. What is the order of reaction?

  Ans: [First order]
- 16. Suggest an appropriate reason for the observation: "On increasing temperature of the reacting system by 10 degrees, the rate of reaction almost doubles or even sometimes becomes five folds."
- \*17. For a chemical reaction, activation energy is zero and at 300K rate constant is  $5.9 \times 10^{-5}$  s<sup>-1</sup>, what will be the rate constant at 400K?

37

[**Ans.**:  $5.9 \times 10^{-5} \text{ s}^{-1}$ ]

\*18. Two reactions occurring at the same temperature have identical values of Ea. Does this ensure that also they will have the same rate constant? Explain.

[Hint: Rate depends on the nature and concentrations of reactants and also pre-exponential factor.

- 19. The rate constant of a reaction is given by the expression  $k = Ae^{-Ea/RT}$  Which factor in this expression should register a decrease so that the reaction proceeds rapidly?
- 20. For a chemical reaction rate constant  $k = 5.3 \times 10^{-4}$  mol L<sup>-1</sup> s<sup>-1</sup>, what will be the order of reaction? [Ans.: Zero order]
- 21. Write the rate law and order for the following reaction:

$$AB_2 + C_2 \rightarrow AB_2C + C$$
 (slow)  
 $AB2 + C \rightarrow AB_2C$  (Fast)]  
[Ans. : Rate = k [AB<sub>2</sub>] [C<sub>2</sub>]; Order = 1 + 1 = 2]

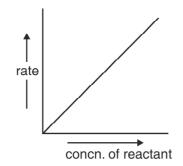
#### SA (I) TYPE QUESTIONS (2 - MARKS QUESTIONS)

- 22. List four factors which affect the rate of a chemical reaction. State how each of these factors changes the reaction rate.
- 23. Differentiate between
  - (a) Average rate and instantaneous rate of a chemical reaction.
  - (b) Rate of a reaction and specific rate of reaction, i.e., rate constant.
- 24. The rate law for the reaction : A + B  $\rightarrow$  P is given by

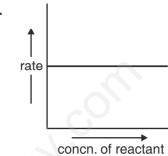
Rate = 
$$k [A]^n [B]^m$$

On doubling the concentration of A and reducing the concentration of B to half of its original concentration, calculate the ratio of the new rate to the previous rate of reaction. [Ans.:  $2^{n-m}$ ]

$$\left[ \text{Hint} : \frac{\text{New rate}}{\text{Previous rate}} = \frac{k [2A]^n \left[ \frac{B}{2} \right]^m}{k [A]^n [B]^m} \right]$$


25. For the reaction in a closed vessel:

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
; Rate = k [NO]<sup>2</sup> [O<sub>2</sub>]


If the volume of the reaction vessel is doubled, how would it affect the rate of the reaction? [Ans.: Diminish to 1/8 of initial value]

- 26. Explain with an example, what is a pseudo first order reaction?
- 27. Show that time required for 99.9% completion of the first order reaction is 10 times of  $t_{1/2}$  for first order chemical reaction.
- 28. The graphs (1 and 2) given below are plots of rate of reaction verses concentration of the reaction. Predict the order from the graphs.

1.



2



29. (a) For a reaction A + B Products, the rate law is given by

$$r = k [A]^{1/2} [B]^2$$

What is the order of reaction?

(b) the conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times, how will it affect the rate of formation of Y?

[Ans.: (a) 5/2; (b) 9 times]

#### SA (II) TYPE QUESTIONS (3-MARK QUESTIONS)

- 31. What is meant by zero order reaction? Derive an integrated rate equation for a zero order reaction.
- 32. (a) Write two points of difference between order of reaction and molecularity of a reaction.
  - (b) Write one point of difference between rate of reaction and rate constant.
- 33. Draw a graph between fraction of molecules and kinetic energy of the reacting species for two different temperatures :
  - (a) Room temperature
  - (b) Temperature 10°C higher than the room temperature
  - (c) Indicate the fraction of additional molecules which react at  $(t + 10)^{\circ}$ C.

XII - Chemistry

#### LONG ANSWER TYPE QUESTIONS (5 - MARK - QUESTIONS)

34. (a) A chemical reaction is of second order w.r.t. a reactant. How will the rate of reaction be affected if the concentration of this reactant is:

(a) doubled; (b) reduced to 1/8th.

[Ans.: (a) Four times (b) 1/64]

(b) For the reaction

2NO (g) + 
$$\text{Cl}_2$$
 (g)  $\rightarrow$  2 NOCI (g)

the following data were collected. All the measurements were taken at 263k

| Experiment<br>No. | Initial<br>[NO] / M | Initial<br>[Cl <sub>2</sub> ] /M | Initial rate of disapperance of Cl <sub>2</sub> [M / min] |
|-------------------|---------------------|----------------------------------|-----------------------------------------------------------|
| 1                 | 0.15                | 0.15                             | 0.60                                                      |
| 2                 | 0.15                | 0.30                             | 1.20                                                      |
| 3                 | 0.30                | 0.15                             | 2.40                                                      |
| 4                 | 0.25                | 0.25                             | ?                                                         |

- (i) Write the expression for rate law.
- (ii) Calculate the value of rate constant and specify its units.
- (iii) What is the initial rate of disapperance of Cl<sub>2</sub> in exp. 4?

[Ans.: (i) Rate = k [NO]<sup>2</sup> [Cl<sub>2</sub>], (ii) k = 177.7 L<sup>2</sup> mol<sup>-2</sup> min<sup>-1</sup>, (iii) 2.7765 M/min

- 35. (a) Draw a plot between log k and reciprocal of absolute temperature (T).
  - (b) The energy of activation for a chemical reaction is 100 kJ/mol. Presence of a catalyst lowers the energy of activation by 75%. What will be effect on the rate of reaction at 20°C, if other factors are equal?
- 36. (a) Derive the equation for rate constant of a first order reaction. What would be the units of the first order rate constant if the concentration is expressed in moles per litre and time in seconds?
  - (b) For first order chemical reaction half life period  $(t_{1/2})$  is concentration independent. Justify the statement by using integrated rate equation.

#### **NUMERICALS**

- 37. The reaction  $SO_2Cl_2(g) \xrightarrow{k} SO_2(g) + Cl_2(g)$  is a first order reaction with half life of 3.15 × 10<sup>4</sup> s at 575 K. What percentage of  $SO_2Cl_2$  would be decomposed on heating at 575K for 90 min. [Ans.: 11.2%]
- 38. A certain reaction is 50% complete in 20 min at 300K and the same reaction is again 50% complete in 5 min at 350K. Calculate the activation energy if it is a first order reaction.

 $(R = 8.314 \text{J K}^{-1} \text{ mol}^{-1}, \log 4 = 0.602)$  [Ans. : 24.206 kJ/mol]

39. For a chemical reaction  $A \rightarrow B$ , it was found that concentration of B increases by 0.2 mol  $L^{-1}$  in half an hour. What is the average rate of reaction.

[Ans.:  $0.0066 \text{ mol } L^{-1} \text{ min}^{-1}$ ]

40. In the reaction R  $\rightarrow$  P, the concentration of R decreases from 0.03M to 0.02 M in 25 minutes. Calculate the average rate of reaction using unit of time both in minutes and seconds.

[Ans.:  $4 \times 10^{-4} \text{M min}^{-1}$ ,  $6.66 \times 10^{-6} \text{ M s}^{-1}$ ]

- 41. A first order reaction has a rate constant  $1.15 \times 10^{-3} \text{ s}^{-1}$ . How long will 5g of this reactant take to reduce to 3g? [Ans.: t = 444 s]
- 42. The rate of reaction triples when the temperature changes from 20°C to 50°C. Calculate the energy of activation. [R = 8.314 J K<sup>-1</sup> mol<sup>-1</sup>, log 3 = 0.48] [Ans.: 12.59 kJ]
- 43. A hydrogenation reaction is carried out at 550 K. If the same reaction is carried out in the presence of a catalyst at the same rate, the temperature required is 400 K. Calculate the activation energy of the reaction if the catalyst lowers the activation barrier by 20 kJ mol-1.

[Hint:  $k = Ae^{-E_a/RT}$ . In the absence of catalyst,  $E_a = x kJ mol^{-1}$ . In the presence of catalyst,  $E_a = (x - 20) kJ mol^{-1}$ ] [Ans.:  $E_a = 100 kJ mol^{-1}$ ]

44. The rate constant for the first order decomposition of  $H_2O_2$  is given by the following equation log k =  $14.34 - 1.25 \times 10^4$  K/T. Calculate  $E_a$  for this reaction and at what temperature will its half-life be 256 minutes.

[Ans. :  $E_a = 239.34 \text{ kJ}$ ; T = 670 K]

45. Show that for a first order reaction, time required for 99% completion is twice for the time required for the 90% completion of reaction.

XII - Chemistry

46. The experimental data for the reaction : 2A +  $B_2 \rightarrow$  2AB, are as follows. Write probable rate expression.

| [A] mol/L <sup>-1</sup> | [B <sub>2</sub> ] mol/L <sup>-1</sup> | Initial rate (mol L <sup>-1</sup> sec <sup>-1</sup> ) |
|-------------------------|---------------------------------------|-------------------------------------------------------|
| 0.5                     | 0.5                                   | 1.6 × 10 <sup>-4</sup>                                |
| 0.5                     | 1.0                                   | $3.2 \times 10^{-4}$                                  |
| 1.0                     | 1.0                                   | 3.2 × 10 <sup>-4</sup>                                |

[Ans : Rate =  $k [B_2]$ 

47. A reaction is 20% complete in 20 minutes. Calculate the time required for 80% completion of reaction, If reaction follows the first order kinetics.

[Ans.: 144 min]

- 48. The decomposition of phosphine 4PH3(g) P4(g) + 6H2(g) has rate law; Rate = k [PH<sub>3</sub>]. The rate constant is  $6.0 \times 10^{-4} \text{ s}^{-1}$  at 300K and activation energy is  $3.05 \times 10^5 \text{ J mol}^{-1}$ . Calculate the value of the rate constant at 310K. (R = 8.314 J K<sup>-1</sup> mol<sup>-1</sup>). [Ans.:  $30.97 \times 10^{-3} \text{ s}^{-1}$ ]
- 49. For the decomposition of azoisopropane to hexane and nitrogen at 543K, the following data is obtained.

| t (sec.)        | 0    | 360  | 720  |
|-----------------|------|------|------|
| Pressure (atm.) | 35.0 | 54.0 | 63.0 |

Calculate the rate constant.

[Ans. : 
$$k_{360} = 2.17 \times 10^{-3} \text{ s}^{-1}$$
 ;  $k_{720} = 2.24 \times 10^{-3} \text{ s}^{-1}$ ]

50. The decomposition of hydrocarbon follows the equation

$$k = (4.5 \times 10^{11} \text{ s}^{-1}) \text{ e}^{-28000 \text{ K/T}},$$

Calculate activation energy (Ea). [Ans.: 232.79 kJmol<sup>-1</sup>)