| CONCEPT: HYDRIDES, OXIDES AND OX | OACIDS CHAP: P-BLOCK ELEMENTS CLASS-XII | |---|--| | CONCEPT: HYDRIDES, OXIDES AND OXOACIDS - | CONCEPT: HYDRIDES, OXIDES AND OXOACIDS - | | P-BLOCK ;CL-XIICARD-1[1×5=5] | P-BLOCK ;CL-XIICARD-2[1×5=5] | | 1# Whose boiling point is more ? (H ₂ O, H ₂ S) | 6# Which has more bond angle ? (NH ₃ , BiH ₃ , PH ₃) | | 2# Which is more basic ? (NH ₃ , BiH ₃) | 7# Which dissolves more in water ? (PH ₃ , NH ₃) | | 3# Which is thermally more stable ? (H_2Se , H_2S) | 8# What is the basicity of H_3PO_4 ? (1,2,3,4) | | 4# Which is more reducing in nature ? (H ₂ O, H ₂ S) | 9# Which is more reducing? | | 5# Which is more acidic ? (H—I , H—F , H—Cl) | (Phosphinic acid , Phosphonic acid) | | 1-H ₂ O, 2-NH ₃ , 3-H ₂ S, 4- H ₂ S, 5-H—I ,6-NH ₃ , 7-NH ₃ , 8-3, 9- | 10# Which is more acidic ? (HOCl ,HOClO ₃) | | phosphonic acid, 10-HOCIO ₃ | | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | OXOACIDS -P-BLOCK ;CL-XIICARD-3[1×5=5] | OXOACIDS - | | | P-BLOCK ;CL-XIICARD-4[1×5=5] | | 11# Which one disproportionate on heating (H ₃ PO ₃ , H ₃ PO ₄) | 16# H ₂ SO ₄ is prepared by | | | (Ostwald's Process , Contact Process) | | 12# Which has more B.P ? (water , HF) | 17# What is the covalence of nitrogen in N_2O_5 ? | | 13# Which is a better complexing agent? | (3, 4, 5)
18# Which one exists ? ($R_3P=O$, $R_3N=O$) | | (Ammonia , Phosphine) 14# Which can act both oxidizing as well as reducing agent ? (| 19# Which decolourise acidified KMnO ₄ solution ? | | H ₂ S , SO ₂) | (moist SO ₃ , moist SO ₂) | | $ \Pi_{2}^{3}, 3\Omega_{2}^{0} $ | 20# When copper metal is treated with dilute nitric acid, what | | 15# What is Oleum? (Pyrosulphuric acid, Pyrophosphoric | is produced along with $Cu(NO_3)_2$ and H_2O (NO_2 , NO) | | acid) | 16-contact process, 17-5, 18-R ₃ P=O, 19- moist SO ₂ , 20- NO | | 11-H ₃ PO ₃ , 12-H-F, 13-ammonia, 14SO ₂ , 15-pyrosulphuric acid | 10-contact process, 17-5, 18-N ₃ r-0, 19- moist 30 ₂ , 20-NO | | 11-113FO3, 12-11-1, 13-animonia, 143O2, 13-pyrosuiphune acid | | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | OXOACIDS -P-BLOCK ;CL-XIICARD-5[1×5=5] | OXOACIDS - | | | P-BLOCK ;CL-XIICARD-6[1×5=5] | | 21# The spontaneous combustion of which gas is technically | 26# The catalyst used in Contact Process are | | used in Holme's Signals ?(H ₂ S or PH ₃) | (Pt/ Rh-gauge at 500K and 9 bar $$, $\rm V_2O_5)$ | | 22# Name the common acid used in pickling of stainless | 27# Which is the anhydride of HNO ₃ | | steel, oxidizer in rocket fuels and in explosives (H ₂ SO ₄ or | (N_2O_3 , N_2O_5 , NO_2) | | HNO ₃) | 28# Which one is colourless gas , neutral , reactive, | | 23# Which gas is poisonous and has rotten fish smell (| paramagnetic and dimerise (NO_2 , NO , N_2O_4) | | hydrogen sulphide , phosphine) | 29# Which one does not have P—O—P linkage | | 24# Which one of the oxides will not have two different N— | (pyrophosphoric acid , polymetaphosphoric acid , | | O bond length ? (N ₂ O ₅ , N ₂ O ₃ , N ₂ O ₄) | Hypophosphoric acid) | | 25# Which acid is more acidic ?(CrO ,CrO ₃ , Cr ₂ O ₃) | 30# Which acid is stronger ?(Perchloric acid, H₂SO₄) | | 21-PH ₃ , 22-HNO ₃ , 23-phosphine, 24- N ₂ O ₄ , 25- CrO ₃ | 26-V ₂ O ₅ , 27-N ₂ O ₅ , 28-NO, 29- hypo phosphoric acid, 30- | | | perchloric acid | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | OXOACIDS -P-BLOCK ;CL-XIICARD-7[1×5=5] | OXOACIDS - | | | P-BLOCK ;CL-XIICARD-8[1×5=5] | | | | | 31# Spontaneous combustion of which one is technically | 36# The gases produced in the thermal decomposition reaction | | 31# Spontaneous combustion of which one is technically used in Holme's Signals | | | (Ca ₃ P ₂ , CaC ₂ , PH ₃) | ,NO ₂ (c) NO, NO ₂ (d)NO ₂ , N ₂ O | | |--|---|--| | 32# The acid containbond have strong reducing properties (P—OH , P—H) . | 37# The ONO bond angle is maximum in | | | 33# Which one is not responsible for ozone layer depletion? (NO_2 , NO , CFC) | (a) NO ₃ ⁻ (b) NO ₂ ⁻ (c) NO ₂ (d) NO ₂ ⁺ 38# Which of the following has least bond angle | | | 34# Which statement is incorrect about White Phosphorous:
P_4 has (a) six P—P single bonds (b) Four P—P single bonds(c)
four lone pairs of electrons (d) PPP angle of 60^0 | (a) H_2O (b) H_2S (c) H_2Se (d) H_2Te
39# Which statement is wrong for NO | | | 35# The number of P—O—P bonds in cycltri metaphosphoric acid is (a) zero (b) 2 (c) 3 (d) 4 | (a) It is anhydride of nitrous acid(b) It's dipole moment is 0.22 D | | | 31-PH ₃ , 32-P—H, 33-NO ₂ , 34-b, 35- 3, 36- d, 37-a, 38-d, 39-c, 40-d | (c) It forms dimer (d) It is paramagnetic | | | | 40# Which of the following hydrogen halide is most volatile (a HF (b) HCl (c) HBr (d) HI | | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | | OXOACIDS - | OXOACIDS - | | | P-BLOCK ;CL-XIICARD-9[1×5=5] | P-BLOCK ;CL-XIICARD-10[1×5=5] | | | 41# Arrange in increasing order of basic strength NH ₃ , BiH ₃ , PH ₃ , AsH ₃ , SbH ₃ | , 46#The conditions to maximize the yield of sulphuric acid Contact Process are | | | 42# Arrange In increasing order of acidic strength HBr,HCl,H, HI | are 12 | | | nitrate test is | 46- high pressure and low temp, as activation energy is high preheated g are used. 47-industries, and laboratories, 48-HOCl, 49-ClO₄ ion is stabilized by resonance, 50-C ₁₂ H ₂₂ O ₁₁ + H ₂ SO ₄ → 12CO ₂ + 11H ₂ O | | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | | OXOACIDS - | OXOACIDS - | | | P-BLOCK ;CL-XIICARD-11 | P-BLOCK ;CL-XIICARD-12 | | | MATCH THE FOLLOWING : I [1×5=5] | MATCH THE FOLLOWING : II : [1×5=5] | | | COLUMN-II COLUMN-II | COLUMN-II COLUMN-II | | | 1.NO ₂ A. Oxidizing agent | 1.Oleum A. Disproportionate when heated | | | | | | ## Downloaded from www.studiestoday.com 68 | 80 | | | | | |---|---|----|---|---| | 2.Conc. H ₂ SO ₄ | B . Acid having reducing properties | | 2.Phosphine | B. Pyrosulphuric acid | | 3.H ₃ PO ₂ | C. Odd electron molecule | | 3. Hydrohen sulphide | C.Rotten fish smell | | 4. HNO ₃ | D. Decolourise acidified KMnO ₄ solution | | 4. Phosphonic acid | D. Ozone depleting compound | | 5. SO ₂ | E. Having dehydrating action | | 5. Nitric Oxide | E. Rotten egg smell | | 1-C, 2-E, 3-B, 4-A, 5 | 5-D | | 5. Nitric Oxide | E. Rotten egg sinen | | | | | 1-B, 2-C, 3-E, 4-A, 5-D | S | | CONCE | PT: HYDRIDES , OXIDES AND | | CONCEPT: HYE | ORIDES, OXIDES AND | | | OXOACIDS - | | <u>0X</u> | OACIDS - | | | | | | | | P-BL | OCK ;CL-XIICARD-13 [1×5=5] | | P-BLOCK | CL-XIICARD-14 | | Answer the followi | ng by Choosing from the perenthesis :- | | Just Name it [1×5=5] | | | (Fluorine .Chlorine | e , Ammonia , Sulphuric acid , nitrous acid) | | 1. Hydrides of Gr-15 used in Holme's Signal | | | (| , | | A powerful oxidizing compound which is produced | | | 1. Oxo acids | obtained through Contact Process | | when Conc. H₂SO | 4 is electrolyzed ? | | | which disproportionate | | | d through Ostwald's Process? | | 3. Hydrides of Gr-15 which give deep blue colour with Cu ⁺⁺ | | | | ds , which is a constituent of | | 4. Halogen that is prepared through Oxidation of HX by Deacon's Process | | | Aquaregia 5. Strongest reducing hydrides of Gr-15. | | | | | نر | _ | | | Halogen form only one oxoacids . Sulphuric acid, 2- nitrous acid, 3-Ammonia, 4-Chlorine, | | | 1- PH ₃ , 2-H ₂ S ₂ O ₈ , 3-H | HNO_3 , 4- HNO_3 + HCl , 5- BiH_3 | | 1- Sulphuric
5-Flourine | | 7 | | | | | PT: HYDRIDES, OXIDES AND | r | CONCEPT: HYD | ORIDES, OXIDES AND | | | OXOACIDS - | | | OACIDS- | | P-BL | OCK ;CL-XIICARD-15 [1×5=5] | | P-BLOCK ;CL-XIICARD-: | 16 [1×5=5] | | Give reason / Acco | ount for the following : | | Give reason / Account for | the following : | | | tion, HI is stronger acid than HCl. | | 6# Iron dissolves in HCl to | | | | de has a much higher boiling point than | | | nspite of higher molecular mass, | | hydrogen Chloride | | | H ₂ S is gas. | onered by treeting metal brows: 1 | | 3# NH ₃ is a strong | of HNO ₃ molecule, The N—O bond (121pm) | | or iodides with conc. H ₂ SC | epared by treating metal bromides | | is shorter than N— | | | I = | D_2 molecule Comment on the natur | | | O_3 act as good reducing agents while H_3PO_4 | | | in SO_2 molecule. Are the two S–O | | does not ? | | | bonds in this molecule equ | | hydrides of group -15 elements? CONCEPT: HYDRIDES, OXIDES AND OXOACIDS CHAP: P-BLOCK ELEMENTS CLASS-XIII 10# Why BiH₃ the strongest reducing agent among all the | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | |-----------------------------------------|-------------------------------| | OXOACIDS -P-BLOCK ;CL-XIICARD-17[1×5=5] | OXOACIDS - | | | | | | P-BLOCK ;CL-XIICARD-18[1×5=5] | | Give reason / Account for the following: | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11# In solution of H_2SO_4 in water , the second dissociation constant Ka_2 , is less than the first dissociation constant Ka_1 12# H_2O is a liquid while , inspite of higher molecular mass , H_2S is gas . 13# In which one of the following structures, NO_2 ⁺ and NO_2 ⁻ , the bond angle has higher value ? 14# NH_3 is a stronger base than PH_3 . OR , 15# Why the bond angle of PH_3 molecule is lesser than that in NH_3 molecule ? | Give reason / Account for the following: 16# Dscribe the favourable conditions for the manufacture of (i) ammonia by Habber's Process (ii) Sulphuric acid by Contact Process (2) 17# Which is stronger acid in aqueous solution (HCl , HI) 18# Arrange HClO ₃ , HClO ₂ , HClO ,HClO ₄ in order of increasing acid strength . Give reason for your answer (2m) 19# Although the H-bonding in hydrogen fluoride is much stronger than that in water , yet water has a much higher boiling point than hydrogen fluoride . Why? 20# Why do chlorine water on standing loses its yellow colour? | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | | | | OXOACIDS -P-BLOCK ;CL-XIICARD-19 [1×5=5] | OXOACIDS - | | | | | | P-BLOCK ;CL-XIICARD-20[1×5=5] | | Arrange the Following in increasing order against the | Arrange the Following in increasing order against the | | properties mentioned :- | properties mentioned :- | | 1# Bond Dissociation Enthalpy:- | 1# Acid strength:- | | | | | (a) Br—Br , I—I , CI—CI , F—F | (a) H—I , H—F , H—Br , H—Cl | | (b) H—I , H—F, H—Br,H—Cl | (b) HF, CH ₄ , H ₂ O, NH ₃ | | (c) O—H, H—Te, H—Se, H—S. | (c) H_2O , H_2Te , H_2Se , H_2S | | (d) N—N, P—P, As—As | 2# Thermal Stability:- | | 2# Base Strength:- | (a) H ₂ O , H ₂ Te , H ₂ Se , H ₂ S | | BiH ₃ , NH ₃ , AsH ₃ , SbH ₃ , PH ₃ | (b) PH ₃ , BiH ₃ , AsH ₃ , SbH ₃ , NH ₃ | | $Ans1$)a-l ₂ < Br_2 < F_2 < Cl_2 ; b-HI< HBr< HCl< HF; c: H—Te <h—se< th=""><th>Ans: 1)a)H—F < H—Cl< HBr< HI, b) NH_3< CH_4< H_2O < HF, c)</th></h—se<> | Ans: 1)a)H—F < H—Cl< HBr< HI, b) NH_3 < CH_4 < H_2O < HF, c) | | <h—s< 0—h;<="" th=""><th>$H_2O < H_2S < H_2Se < H_2Te$</th></h—s<> | $H_2O < H_2S < H_2Se < H_2Te$ | | 11 310 11, | | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ | 2) a- H_2 Te< H_2 Se< H_2 S< H_2 O; b- BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3 | | | | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS – | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES , OXIDES AND OXOACIDS —P-BLOCK ;CL-XIICARD-21 [1×5=5] | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES , OXIDES AND OXOACIDS – P-BLOCK ;CL-XIICARD-22 [1×5=5] | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS —P-BLOCK; CL-XII CARD-21 [1×5=5] Arrange the Following in increasing order against the | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS – P-BLOCK; CL-XII CARD-22 [1×5=5] Arrange the Following in increasing order against the | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS —P-BLOCK; CL-XII CARD-21 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS P-BLOCK; CL-XII CARD-22 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES . OXIDES AND OXOACIDS —P-BLOCK ;CL-XII CARD-21 [1×5=5] Arrange the Following in increasing order against the properties mentioned :- 1# Bond Angle:- (a) H ₂ Se , H ₂ O, H ₂ S ,H ₂ Te | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS P-BLOCK; CL-XII CARD-22 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- 1# Covalent Character:- (a) Cr ₂ O ₃ , CrO, CrO ₃ | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES , OXIDES AND OXOACIDS —P-BLOCK ;CL-XIICARD-21 [1×5=5] Arrange the Following in increasing order against the properties mentioned :- 1# Bond Angle:- (a) H ₂ Se , H ₂ O, H ₂ S ,H ₂ Te (b) PH ₃ , BiH ₃ , AsH ₃ , SbH ₃ , NH ₃ | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS – P-BLOCK; CL-XII CARD-22 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- 1# Covalent Character:- (a) Cr ₂ O ₃ , CrO, CrO ₃ (b) P ₂ O ₅ , Sb ₂ O ₅ , As ₂ O ₅ | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS —P-BLOCK; CL-XII CARD-21 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- 1# Bond Angle:- (a) H ₂ Se , H ₂ O, H ₂ S ,H ₂ Te (b) PH ₃ , BiH ₃ , AsH ₃ , SbH ₃ , NH ₃ 2# Boiling Point :- (a) H ₂ S , H ₂ O , H ₂ Te , H ₂ Se | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS P-BLOCK; CL-XII CARD-22 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- 1# Covalent Character:- (a) Cr ₂ O ₃ , CrO, CrO ₃ (b) P ₂ O ₅ ,Sb ₂ O ₅ , As ₂ O ₅ (c) BeCl ₂ , MgCl ₂ , CaCl ₂ , BaCl ₂ | | 2BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS —P-BLOCK; CL-XII CARD-21 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- 1# Bond Angle:- (a) H ₂ Se, H ₂ O, H ₂ S, H ₂ Te (b) PH ₃ , BiH ₃ , AsH ₃ , SbH ₃ , NH ₃ 2# Boiling Point:- (a) H ₂ S, H ₂ O, H ₂ Te, H ₂ Se (b) PH ₃ , BiH ₃ , AsH ₃ , SbH ₃ , NH ₃ | 2) a- H ₂ Te< H ₂ Se< H ₂ S< H ₂ O; b- BiH ₃ < SbH ₃ < AsH ₃ < PH ₃ < NH ₃ CONCEPT: HYDRIDES, OXIDES AND OXOACIDS P-BLOCK; CL-XII CARD-22 [1×5=5] Arrange the Following in increasing order against the properties mentioned:- 1# Covalent Character:- (a) Cr ₂ O ₃ , CrO, CrO ₃ (b) P ₂ O ₅ , Sb ₂ O ₅ , As ₂ O ₅ (c) BeCl ₂ , MgCl ₂ , CaCl ₂ , BaCl ₂ 2# Acid Strength:- | | CONCEPT: HYDRIDES, OXIDES AND OXOACIDS -P-BLOCK; CL-XII CARD-23 [1×5=5] | CONCEPT: HYDRIDES, OXIDES AND OXOACIDS - | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | P-BLOCK ;CL-XIICARD-24 [1×5=5] | | Arrange the Following in increasing order against the | Arrange the Following in increasing order against the | | properties mentioned :- | properties mentioned :- | | 1# Reducing properties: | 1# Acidic Character | | (a) H ₂ O, H ₂ Te , H ₂ Se , H ₂ S | (a) H ₂ SO ₃ &H ₂ SO ₄ | | (b) H ₃ PO ₄ , H ₃ PO ₂ , H ₃ PO ₃ | (b)GeO ₂ ,ClO ₂ ,As ₂ O ₃ ,Ga ₂ O ₃ | | 2# Acidic Character | (c) P_2O_5 , SO_3 , N_2O_5 , CO_2 , SiO_2 | | (a) N ₂ O, N ₂ O ₅ , N ₂ O ₃ ,NO , N ₂ O ₄ | (d) Al_2O_3 ,CaO, Cl_2O_7 ,SO $_3$ | | (b) ClO ₂ , Cl ₂ O ₇ ,Cl ₂ O , Cl ₂ O ₆ | (e) BF ₃ ,BBr ₃ ,BCl ₃ | | (c) HNO ₂ & HNO ₃ | | | | | | CONCEPT: HYDRIDES, OXIDES AND | CONCEPT: HYDRIDES, OXIDES AND | | CONCEPT: HYDRIDES, OXIDES AND OXOACIDS -P-BLOCK; CL-XII CARD-25 [5M] | CONCEPT: HYDRIDES, OXIDES AND OXOACIDS - | | | | | | OXOACIDS - | | OXOACIDS -P-BLOCK ;CL-XIICARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) | OXOACIDS – P-BLOCK ;CL-XIICARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt | | OXOACIDS -P-BLOCK ;CL-XIICARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The | OXOACIDS – P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas | | OXOACIDS –P-BLOCK ;CL-XIICARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this | | OXOACIDS –P-BLOCK ;CL-XIICARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to | OXOACIDS – P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas | | OXOACIDS -P-BLOCK; CL-XII CARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this | | OXOACIDS –P-BLOCK ;CL-XIICARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. | | OXOACIDS -P-BLOCK; CL-XII CARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | | OXOACIDS -P-BLOCK; CL-XII CARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | | OXOACIDS -P-BLOCK; CL-XII CARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | | IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and write equations for the reactions involved. CONCEPT: HYDRIDES, OXIDES AND | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | | DENTIFY THE FOLLOWING COMPOUNDS | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | | OXOACIDS –P-BLOCK; CL-XII CARD-25 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and write equations for the reactions involved. CONCEPT: HYDRIDES, OXIDES AND OXOACIDS –P-BLOCK; CL-XII CARD-27 [5M] | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | | IDENTIFY THE FOLLOWING COMPOUNDS 1# (A) reacts with H ₂ SO ₄ to form purple coloured solution (B) which reacts with KI to form colourless compound (C). The colour of (B) disappears with acidic solution of FeSO ₄ . With concentrated H ₂ SO ₄ (B) forms (D) which can decompose to give a black compound (E) and O ₂ . Identify (A) to (E) and write equations for the reactions involved. CONCEPT: HYDRIDES, OXIDES AND OXOACIDS —P-BLOCK; CL-XIICARD-27 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 3# A colourless inorganic salt (A) decomposes completely at | P-BLOCK; CL-XII CARD-26 [5M] IDENTIFY THE FOLLOWING COMPOUNDS 2# When conc. sulphuric acid was added to an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this tube. On cooling, the gas 'A' changed into a colourless gas 'B'. (a) Identify the gases A and B. (b) Write the | oxide. White phosphorus burns in excess of (B) to produce a strong white dehydrating agent. Write balanced equations for the reactions involved in the above process. Gradual addition of KI to Bi(NO₃)₃ solution initially produces a dark brown precipitate which dissolves in excess of KI to give a clear yellow solution. Write chemical equations for the above. | CONCEPT: HYDRIDES | <u>, OXIDES</u> | AND | OXOACIDS | <u> </u> | |-------------------|-----------------|-----|----------|----------| | · | | | | _ | P-BLOCK ;CL-XII ---- CARD-11 | MATCH THE FOLLOWING : I [1×5=5] | | | |---------------------------------------------------------------------|-----------|--| | COLUMN-I | COLUMN-II | | | 1.NO ₂ C. Odd electron molecule | | | | 2.Conc. H ₂ SO ₄ E. Having dehydrating action | | | 3.H₃PO₂ 4. HNO₃ 5. SO₂ B. Acid having reducing properties A. Oxidizing agent D. Decolourise acidified KMnO₄ solution CONCEPT: HYDRIDES, OXIDES AND OXOACIDS - P-BLOCK ;CL-XII ---- CARD-13 [1×5=5] #### **CONCEPT: HYDRIDES, OXIDES AND OXOACIDS** P-BLOCK ;CL-XII ----CARD-12 Answer MATCH THE FOLLOWING : II : [1×5=5] | COLUMN-I | COLUMN-II | |----------------------|---------------------------------| | 1.Oleum | B. Pyrosulphuric acid | | 2.Phosphine | C.Rotten fish smell | | 3. Hydrohen sulphide | E. Rotten egg smell | | 4. Phosphonic acid | A. Disproportionate when heated | | 5. Nitric Oxide | D. Ozone depleting compound | ### CONCEPT: HYDRIDES, OXIDES AND OXOACIDS P-BLOCK ;CL-XII ----CARD-14 #### **Answer** - **6.** Oxo acids obtained through Contact Process **Sulphuric acid** - 7. Oxoacids which disproportionate --nitrous acid - 8. Hydrides of Gr-15 which give deep blue colour with Cu⁺⁺ -- Ammonia - **9.** Halogen that is prepared through Oxidation of HX by Deacon's Process ---**Chlorine** - 10. Halogen form only one oxoacids .--- Fluorine, #### Just Name it [1×5=5] - 6. Hydrides of Gr-15 used in Holme's Signal -- PH3 - A powerful oxidizing compound which is produced when Conc. H₂SO₄ is electrolyzed ?— Peroxodisulphate ion - 8. Oxoacids obtained through Ostwald's Process ? sulphuric acid - 9. Name the oxoacids , which is a constituent of Aquaregia \cdot HNO₃ . - 10. Strongest reducing hydrides of Gr-15 . − BiH₃ ANSWERS: CONCEPT: HYDRIDES, OXIDES AND OXOACIDS - ### P-BLOCK ;CL-XII ---- CARD-19 -Answer - 1# (a) I—I < F—F < Br—Br < Cl—Cl (Bond Dissociation Enthalpy)—Interelectronic repulsion - (b) H-I < H-Br < H-Cl < H-F - © H—Te < H—Se <H—S <H—O - (d) As -As < N-N < P-P > - 2# BiH₃ < SbH₃ < AsH₃ < PH₃ < NH₃ (Base Strength) small size of N High electron density in Ammonia ### P-BLOCK ;CL-XII ---- CARD-20-Answer - 1# (a) H—F < H—Cl < H—Br < H—I (Acid strength)—Lower BDE of HI,large size of I (B) CH₄ < NH₃ < H₂O < HF - \bigcirc H₂O < H₂S < H₂Se < H₂Te - 2# (a) H_2Te < H_2Se < H_2O (Thermal Stability) ---BDE - (b) $BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$ #### P-BLOCK ;CL-XII ---- CARD-21—Answer - 1#(a) H₂Te < H₂Se < H₂S < H₂O (Bond Angle)----- Size of central atom , electronegativity, repulsion of bond pairs. - (b) $BiH_3 < SbH_3 < AsH_3 < PH_3 < NH_3$ - 2# (a) $H_2S < H_2Se < H_2Te < H_2O$ (Boiling Point) -- H-Bond and Vander waal's force - (b) $PH_3 < AsH_3 < NH_3 < SbH_3 < BiH_3$ (Boiling Point) -- H-Bond and Vander waal's force - 3#(a) H₂O < H₂Te < H₂Se < H₂S (Volatility)--- H-Bond and Vander waal's force ## P-BLOCK ;CL-XII ---- CARD-22-Answer - 1# (a) $CrO < Cr_2O_3 < CrO_3$ (b) $As_2O_5 < Sb_2O_5 < P_2O_5$ (c) $BaCl_2 < CaCl_2 < MgCl_2 < BeCl_2$ 2# (a) $HOClO < HOClO_2 < HOClO_3$ (Acid Strength) Stability of its conjugate base , charge dispersal , Oxidation states. - (b) HOI < HOBr < HOCl (Acid Strength) --- Stronger the O—X bond Weaker the O—H bond More the acidic character. ### P-BLOCK ;CL-XII ---- CARD-23—Answer - 1# (a) $H_2O < H_2S < H_2Se < H_2Te$ (Acid Strength and Reducing Character) --- BDE (b) $H_3PO_4 < H_3PO_3 < H_3PO_2$ - $2\#(a)\ N_2O < NO < N_2O_3 < N_2O_4 < N_2O_5$ (Acidic Character) Higher oxidation states, covalent character - (b) $Cl_2O < Cl_2O_6 < Cl_2O_7$ (Acid Strength)-- Higher oxidation states, covalent character - (c) $HNO_2 < HNO_3$ ## Downloaded from www.studiestoday.com ### P-BLOCK ;CL-XII ---- CARD-24-Answer - (a) H_2SO_3 < H_2SO_4 (Acidic character) - (b) $Ga_2O_3 < GeO_2 < As_2O_3 < ClO_2$ (Acidic Character) - (d) $CaO < Al_2O_3 < SO_3 < Cl_2O_7$ - (e) $BF_3 < BCl_3 < BBr_3$ (Acidic Character)—Effective 2p—2p overlap in BF_3 reduces the electron deficiency of B, make it less acidic. #### CONCEPT: ANOMALOUS PROPERTIES CHAP: P-BLOCK ELEMENTS CLASS-XII | ANOMALOUS PROPERTIES | ANOMALOUS PROPERTIES | | |--------------------------------------------------------------------------|-------------------------------------------------------------------|-----| | P-BLOCK ;CL-XIICARD-1 [1×5=5] | P-BLOCK ;CL-XIICARD-2 [1×5=5] | | | II # CHOOSE THE CORRECT ANSWER FROM GIVEN | II # CHOOSE THE CORRECT ANSWER FROM GIVEN OPTIONS. | | | OPTIONS . | C# M/high and avieta 2 / B.B. O. B.M. O. | | | 1# Whose boiling point is more ? (H ₂ O, H ₂ S) | 6# Which one exists ? (R ₃ P=O , R ₃ N=O) | İ | | 1# Whose boiling point is more ? (n ₂ 0, n ₂ 3) | 7# Which is more reactive ? (Red— P , White – P) | İ | | 2# Which dissolves more in water ? (PH ₃ , NH ₃) | 8# Which has more catenation properties ? (N or P) | | | 3# Which is more basic ? (NH ₃ , BiH ₃) | 9# Which is possible (CIF ₃ or FCl ₃) | | | 4# Which has more oxidizing ability (Cl ₂ , F ₂) | 10# Which is more reactive (Nitrogen gas, Phosphorus) | | | 5# Which has more bond dissociation enthalpy? | | | | (F—F , CI—CI) | | | | ANOMALOUS PROPERTIES | ANOMALOUS PROPERTIES | | | P-BLOCK ;CL-XIICARD-3 [1×5=5] | P-BLOCK ;CL-XIICARD-4 [1×5=5] | | | II # CHOOSE THE CORRECT ANSWER FROM GIVEN OPTIONS | Give Reason for each of the following :- | | | . 2 | 1 # NCI ₅ does not exist but NCI ₃ exits | | | 11# Whose sigma bond strength is more?(O—O , S—S) | | | | 12# Whose lonisation energy is mars 2 / N. O.) | BUT both PCl ₃ & PCl ₅ exists. | | | 12# Whose Ionisation energy is more ? (N ,O) | 2# Why does $R_3P = O$ exist but $R_3N = O$ does not | | | 13# Which one does not release white fumes of HCl | (R = alkyl group)? | | | [| l | ₽—— | ## Downloaded from www.studiestoday.com Downloaded from www.studiestodav.com 74 upon hydrolysis (PCl₅, PCl₃, SiCl₄, NCl₅) 3#Nitrogen exists as diatomic molecule and phosphorus 14# Which is more stable ? (NF₃, NCl₃) as P₄. Why? 15# Which has more negative gain enthalpy? (F, Cl) 4# Oxygen & nitrogen are gases BUT sulphur and phosphorus are found in solid state at room temp. 5# BiCl₃ is more stable than BiCl₅.Explain ANOMALOUS PROPERTIES **ANOMALOUS PROPERTIES** P-BLOCK;CL-XII ---- CARD-5 [1×5=5] P-BLOCK ;CL-XII ---- CARD-6 [1×5=5] Give Reason for each of the following :-Give Reason for each of the following :-6 # Although electron gain enthalpy of fluorine is less 11# Are all the five bonds in PCI₅ molecule equivalent? Justify y negative as compared to chlorine, fluorine is a stronger answer oxidising agent than chlorine. 12# The O—O bond energy is less than the S—S bond energy. **7#** Explain why fluorine forms only one oxoacid, HOF. sigma bond) OR Sulphur exhibits a stronger tendency for catenation as compared to oxygen. 8# CIF₃ exists but FCl₃ does not Explain 13 # NH₃ is a good complexing agent but NF₃ is not. 9# Why does nitrogen show catenation properties less than 14# On being slowly passed through water PH₃ forms bubbles phosphorus? but NH₃ dissolves. 10 # The electron gain enthalpy of Sulphur is more than 15# Why does NH₃ form hydrogen bond but PH₃ does not? Oxygen. **ANOMALOUS PROPERTIES ANOMALOUS PROPERTIES** P-BLOCK ;CL-XII ---- CARD-7 [1×5=5] P-BLOCK ;CL-XII ---- CARD-8 [1×5=5] Give Reason for each of the following: 4 Give Reason for each of the following :-16# Why does NH₃ act as a Lewis base? OR NH₃ acts as 21# I₃ is known but F₃ is not. ligand or good complexing agent 22# HF is least volatile, whereas HCl is the most volatile.OR,HF OR, NH₃ has higher H⁺ affinity than PH₃. has higher B.P than HCl OR, HF is liquid and HCl is gas 17# Why is H2O a liquid and H2S a gas? 23#Oxygen and fluorine both stabilize higher oxidation states o metals but oxygen exceeds fluorine in doing so . 18# SCl₆ is not known but SF₆ is known. 24 # Bismuth is a strong oxidizing agent in pentavalent state. 19# SF₆ exists but SH₆ does not #### CONCEPT: ANOMALOUS PROPERTIES CHAP: P-BLOCK ELEMENTS CLASS-XII 20# SF₆ is known but OF₆ is not formed .Explain. 25# PH₃ has lower boiling point than NH₃. Why? | ANOMALOU | IS PROPERTIES | ANOMALOUS PROPERTIES | |----------|---------------|----------------------| ## Downloaded from www.studiestoday.com | P-BLOCK ;CL-XIICARD-9 [1×5=5] | P-BLOCK ;CL-XIICARD-10 [1×5=5] | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Give Reason for each of the following :- | Give Reason for each of the following :- | | 26 # Explain why NH ₃ is basic while BiH ₃ is only feebly basic. | 31#Why is N ₂ less reactive at room temperature? | | 27 # Why does the reactivity of nitrogen differ from phosphorus? 28# Why does white ppt. of AgCl dissolves in ammonia solution. 29# Though nitrogen exhibits +5 oxidation state, it does not form pentahalide. Give reason. | 32# Fluorine exhibits only –1 oxidation state whereas other halogens exhibit + 1, + 3, + 5 and + 7 oxidation states also. Explain. 33# Considering the parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy, compare the oxidising power of F ₂ and Cl ₂ . | | 30# There is a large difference between the melting and boiling points of Oxygen and Sulphur . | 34# Fluorine never acts as a central atom in its compounds with other halogens . | | | 35 # In trimethylamine, the nitrogen has a pyramidal geometry whereas in trisilylamine, it has a planar | | | | | ANOMALOUS PROPERTIES | ANOMALOUS PROPERTIES | | P-BLOCK ;CL-XIICARD-11 [1×5=5] | P-BLOCK ;CL-XIICARD-12 [1×5=5] | | # Arrange the Following in increasing order against the properties mentioned :- | # Arrange the Following in increasing order against the properties mentioned :- | | 1# Catenation property:- | 1# Electron Gain Enthalpy :- | | (a) As , N, P , Sb | (a) I , Br , Cl , F (b) N , O, P ,S | | (b) Se ,S , Te ,O | (c) F, Cl , O , S | | 2# Electronegativity:- (a) Cl ,F, Br, I | 2# Ionisation Enthalpy:- | | (b) O, N, F, C | (a) O , N , F , C | | 3# Stability:- F ⁻ _(aq) , I ⁻ _(aq) , CI ⁻ _(aq) , Br ⁻ _(aq) | (b) Ar ,Ne ,He , Xe ,Kr | | | | | | | | 04 11 10 0 0 21 11 1 0 21 11 0 | 0.4%11.6 | | Q.1 # H ₂ O | Q.2# NH ₃ | Q.3# H ₂ S | Q.4# H ₂ S | Q.5# H—I | |------------------------|----------------------|-----------------------|-----------------------|----------| | | | | | | # Downloaded from www.studiestoday.com 76 | Q.6# NH ₃ | Q.7# NH ₃ | Q.8# 3 | Q.9# Phosphinic acid | Q.10# HOClO ₃ | |-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------| | Q.11# H ₃ PO ₃ | Q.12# water | Q.13# Ammonia | Q.14# SO ₂ | Q.15# Pyrosulphuric acid | | | | | | | | Q.16# Contact
Process | Q.17# 4 | Q.18# R ₃ P=O | Q.19# moist SO ₂ | Q.20# NO | | | | | | V C) | | Q.21# PH ₃ | Q.22# HNO ₃ | Q.23# phosphine | Q.24# N ₂ O ₄ | Q.25# CrO ₃ | | | | | | | | Q.26# V ₂ O ₅ | Q.27# N ₂ O ₅ | Q.28# NO | Q.29# Hypophosphoric acid | Q.30# Perchloric acid | | | | | | | | Q.31# PH ₃ | Q.32# P—H | Q.33# NO ₂ | Q.34# Four P—P single bonds | Q.35# 3 | | | | | <i>y</i> | | | Q.36# NO ₂ , N ₂ O | Q.37# NO ₂ + | Q.38# H ₂ Te | Q.39#(a) It is anhydride of nitrous acid | Q.40# HCl | | | | | | | | Q.41#, BiH ₃ ,
SbH ₃ , AsH ₃ ,PH ₃ ,
NH ₃ | Q.42# HF ,
HCl , HBr, HI | Q.43# 200 atm , 700K ,Fe $_2$ O $_3$ with small amount of K_2 O , Al_2 O $_3$ | Q.44# | Q.45# [Fe(H ₂ O) ₅ (NO)] ²⁺ | | | | | | | | Q.46# 2 bar , 720 K , V_2O_5 catalyst for converting SO_2 to SO_3 and absorbing SO_3 in Conc. H_2SO_4 . | Q.47# Fertiliser making, Lead storage battery | Q.48#HOCI | Q.49#CLO ₄ is resonance stabilized due to 4 oxygen atoms | Q.50# $C_{12}O_{11}H_{22} + conc.H_{2}SO_{4}$ $\rightarrow 12C + 11H_{2}O$ |