Downloaded from www.studiestoday.com

CHAPTER - 5

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

KEY POINTS

- The imaginary number $\sqrt{-1}=\mathrm{i}$, is called iota
- For any integer $k, i^{4 k}=1, i^{4 k+1}=i, i^{4 k+2}=-1, i^{4 k+3}=-i$
- $\sqrt{a} \times \sqrt{b} \neq \sqrt{a b}$ if both a and b are negative real numbers
- A number of the form $z=a+i b$, where $a, b \in R$ is called a complex number.
a is called the real part of z, denoted by $\operatorname{Re}(z)$ and b is called the imaginary part of z, denoted by $\operatorname{Im}(z)$
- $a+i b=c+i d$ if $a=c$, and $b=d$
- $\mathrm{z}_{1}=\mathrm{a}+\mathrm{ib}, \mathrm{z}_{2}=\mathrm{c}+\mathrm{id}$.

In general, we cannot compare and say that $z_{1}>z_{2}$ or $z_{1}<z_{2}$
but if $\mathrm{b}, \mathrm{d}=0$ and $\mathrm{a}>\mathrm{c}$ then $\mathrm{z}_{1}>\mathrm{z}_{2}$
i.e. we can compare two complex numbers only if they are purely real.

- $-\mathrm{z}=-\mathrm{a}+\mathrm{i}(-\mathrm{b})$ is called the Additive Inverse or negative of $\mathrm{z}=\mathrm{a}+\mathrm{ib}$
- $\bar{z}=a-i b$ is called the conjugate of $z=a+i b$
$z^{-1}=\frac{1}{z}=\frac{a-i b}{a^{2}+b^{2}}=\frac{\bar{z}}{|z|^{2}}$ is called the multiplicative Inverse of
$z=a+i b(a \neq 0, b \neq 0)$

Downloaded from www.studiestoday.com

- The coordinate plane that represents the complex numbers is called the complex plane or the Argand plane
- Polar form of $z=a+i b$ is,
$z=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{a^{2}+b^{2}}=|z|$ is called the modulus of z, θ is called the argument or amplitude of z.
- The value of θ such that, $-\pi<\theta \leq \pi$ is called the principle argument of z.
- $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
- $\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
- $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|},\left|z^{n}\right|=|z|^{n},|z|=|\bar{z}|=|-z|=|-\bar{z}|, \quad z \bar{z}=|z|^{2}$
- $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
- $\left|z_{1}-z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
- For the quadratic equation $a x^{2}+b x+c=0, a, b, c \in R, a \neq 0$, if $b^{2}-4 a c<0$ then it will have complex roots given by,

$$
x=\frac{-b \pm i \sqrt{4 a c-b^{2}}}{2 a}
$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Evaluate, $\sqrt{-16}+3 \sqrt{-25}+\sqrt{-36}-\sqrt{-625}$
2. Evaluate, $\mathrm{i}^{29}+\frac{1}{\mathrm{i}^{29}}$
3. Find values of x and y if,

$$
(3 x-7)+2 i y=-5 y+(5+x) i
$$

Downloaded from www.studiestoday.com

4. Express $\frac{\mathrm{i}}{1+\mathrm{i}}$ in the form $\mathrm{a}+\mathrm{ib}$
5. If $z=\frac{1}{3+4 i}$, find the conjugate of z
6. Find the modulus of $z=3-2 i$
7. If z is a purely imaginary number and lies on the positive direction of y-axis then what is the argument of z ?
8. Find the multiplicative inverse of $5+3 \mathrm{i}$
9. If $|z|=4$ and argument of $z=\frac{5 \pi}{6}$ then write z in the form $x+i y ; x, y \in R$
10. If $z=1-i$, find $\operatorname{Im}\left(\frac{1}{z \bar{z}}\right)$
11. Simplify $(-\mathrm{i})\left(3\right.$ i) $\left(\frac{-1 \mathrm{i}}{6}\right)^{3}$
12. Find the solution of the equation $x^{2}+5=0$ in complex numbers.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

13. For Complex numbers $z_{1}=-1+i, z_{2}=3-2 i$
show that,

$$
\operatorname{Im}\left(z_{1} z_{2}\right)=\operatorname{Re}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)+\operatorname{Im}\left(z_{1}\right) \operatorname{Re}\left(z_{2}\right)
$$

14. Convert the complex number $-3 \sqrt{2}+3 \sqrt{2} i$ in polar form
15. If $x+i y=\sqrt{\frac{1+i}{1-i}}$, prove that $x^{2}+y^{2}=1$
16. Find real value of θ such that,

$$
\frac{1+i \cos \theta}{1-2 i \cos \theta} \text { is a real number }
$$

17. If $\left|\frac{z-5 i}{z+5 i}\right|=1$, show that z is a real number.

Downloaded from www.studiestoday.com

18. If $(x+i y)^{\frac{1}{3}}=a+i b$, prove that, $\left(\frac{x}{a}+\frac{y}{b}\right)=4\left(a^{2}-b^{2}\right)$
19. For complex numbers $z_{1}=6+3 i, z_{2}=3-i$ find $\frac{z_{1}}{z_{2}}$
20. If $\left(\frac{2+2 i}{2-2 i}\right)^{n}=1$, find the least positive integral value of n.
21. Find the modulus and argument of $z=2-2 i$
22. Solve the equation, $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

23. If z_{1}, z_{2} are complex numbers such that, $\left|\frac{z_{1}-3 z_{2}}{3-z_{1} \bar{z}_{2}}\right|=1$ and $\left|z_{2}\right| \neq 1$ then find $\left|z_{1}\right|$
24. Find the square root of $-3+4 i$ and verify your answer.
25. If $x=-1+i$ then find the value of $x^{4}+4 x^{3}+4 x^{2}+2$

ANSWERS

1. 0
2. $x=-1, y=2$
3. $\bar{z}=\frac{3}{25}+\frac{4 i}{25}$
4. $\frac{\pi}{2}$
5. $z=-2 \sqrt{3}+2 i$
6. $\frac{\mathrm{i}}{72}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

14. $z=6\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \quad$ 16. $\quad \theta=(2 n+1) \frac{\pi}{2}, n \in z$
15. Hint : use property $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
16. $\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}=\frac{3(1+\mathrm{i})}{2}$
17. $n=4$
18. modulus $=2 \sqrt{2}$, argument $=\frac{-\pi}{4}$
19. $x=\frac{\sqrt{2} \pm i \sqrt{34}}{2 \sqrt{3}}$
20. Hint: use $|z|^{2}=z . \bar{z},\left|z_{1}\right|=3$
21. $\pm(1+2 i)$
22. 6
