CHAPTER - 5

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

KEY POINTS

- The imaginary number $\sqrt{-1} = i$, is called iota
- For any integer k, $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$
- $\sqrt{a} \times \sqrt{b} \neq \sqrt{ab}$ if both a and b are negative real numbers
- A number of the form z = a + ib, where $a, b \in R$ is called a complex number.

a is called the real part of z, denoted by Re(z) and b is called the imaginary part of z, denoted by Im(z)

- \bullet a + ib = c + id if a = c, and b = d
- $z_1 = a + ib, z_2 = c + id.$

In general, we cannot compare and say that $z_1 > z_2$ or $z_1 < z_2$

but if b, d = 0 and a > c then $z_1 > z_2$

i.e. we can compare two complex numbers only if they are purely real.

- -z = -a + i(-b) is called the Additive Inverse or negative of z = a + ib
- $\overline{z} = a ib$ is called the conjugate of z = a + ib

$$z^{-1} = \frac{1}{z} = \frac{a - ib}{a^2 + b^2} = \frac{\overline{z}}{|z|^2}$$
 is called the multiplicative Inverse of

 $z = a + ib (a \neq 0, b \neq 0)$

Downloaded from www.studiestoday.com

- The coordinate plane that represents the complex numbers is called the complex plane or the Argand plane
- Polar form of z = a + ib is,

$$z = r (\cos\theta + i \sin\theta)$$
 where $r = \sqrt{a^2 + b^2} = |z|$ is called the modulus of z,

 θ is called the argument or amplitude of z.

- The value of θ such that, $-\pi < \theta \le \pi$ is called the principle argument of z.
- \bullet $|z_1 + z_2| \le |z_1| + |z_2|$
- \bullet $|z_1z_2| = |z_1|. |z_2|$

- $|z_1 z_2| \ge ||z_1| |z_2||$
- For the quadratic equation $ax^2 + bx + c = 0$, a, b, $c \in R$, $a \ne 0$, if $b^2 4ac < 0$ then it will have complex roots given by,

$$x = \frac{-b \pm i\sqrt{4ac - b^2}}{2a}$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

- 1. Evaluate, $\sqrt{-16} + 3\sqrt{-25} + \sqrt{-36} \sqrt{-625}$
- 2. Evaluate, $i^{29} + \frac{1}{i^{29}}$
- 3. Find values of x and y if,

$$(3x - 7) + 2iy = -5y + (5 + x)i$$

Downloaded from www.studiestoday.com

- 4. Express $\frac{i}{1+i}$ in the form a + ib
- If $z = \frac{1}{3 + 4i}$, find the conjugate of z
- 6. Find the modulus of z = 3 - 2i
- 7. If z is a purely imaginary number and lies on the positive direction of y-axis then what is the argument of z?
- 8. Find the multiplicative inverse of 5 + 3i
- If |z| = 4 and argument of $z = \frac{5\pi}{6}$ then write z in the form x + iy; $x, y \in R$ 9.
- 10. If z = 1 i, find $Im \left(\frac{1}{z \overline{z}} \right)$
- Simplify (-i)(3 i) $\left(\frac{-1}{6}\right)^3$
- Find the solution of the equation $x^2 + 5 = 0$ in complex numbers. 12.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

For Complex numbers $z_1 = -1 + i$, $z_2 = 3 - 2i$ 13. show that,

$$Im (z_1z_2) = Re (z_1) Im(z_2) + Im (z_1) Re (z_2)$$

- Convert the complex number $-3\sqrt{2} + 3\sqrt{2}$ i in polar form
- If x + iy = $\sqrt{\frac{1+i}{1-i}}$, prove that $x^2 + y^2 = 1$
- 16. Find real value of θ such that,

$$\frac{1+i\cos\theta}{1-2i\cos\theta}$$
 is a real number

17. If $\left|\frac{z-5i}{z+5i}\right|=1$, show that z is a real number. ownloaded from www.studiestoday.com

18. If
$$(x + iy)^{\frac{1}{3}} = a + ib$$
, prove that, $(\frac{x}{a} + \frac{y}{b}) = 4(a^2 - b^2)$

- 19. For complex numbers $z_1 = 6 + 3i$, $z_2 = 3 i$ find $\frac{z_1}{z_2}$
- 20. If $\left(\frac{2+2i}{2-2i}\right)^{11} = 1$, find the least positive integral value of n.
- 21. Find the modulus and argument of z = 2 2i
- 22. Solve the equation, $\sqrt{3}x^2 \sqrt{2}x + 3\sqrt{3} = 0$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

- 23. If z_1 , z_2 are complex numbers such that, $\left|\frac{z_1-3z_2}{3-z_1\overline{z}_2}\right|=1$ and $|z_2|\neq 1$ then find $|z_1|$
- 24. Find the square root of -3 + 4i and verify your answer.
- 25. If x = -1 + i then find the value of $x^4 + 4x^3 + 4x^2 + 2$

ANSWERS

- 1. 0
- 3. x = -1, y = 2
- 5. $\bar{z} = \frac{3}{25} + \frac{4i}{25}$
- 7. $\frac{\pi}{2}$
- $z = -2\sqrt{3} + 2i$
- 11. $\frac{1}{72}$

- 2. 0
- 4. $\frac{1}{2} + \frac{1}{2}i$
- √13
- 8. $\frac{5}{34} \frac{3 \text{ i}}{34}$
- 10. C
- 12. $x = \pm i\sqrt{5}$

14.
$$z = 6 \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$
 16. $\theta = (2n+1)\frac{\pi}{2}, n \in z$

17. **Hint**: use property
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

19.
$$\frac{z_1}{z_2} = \frac{3(1+i)}{2}$$
 20. $n = 4$

21. modulus =
$$2\sqrt{2}$$
, argument = $\frac{-\pi}{4}$

22.
$$x = \frac{\sqrt{2} \pm i\sqrt{34}}{2\sqrt{3}}$$
 23. Hint: use $|z|^2 = z.\bar{z}$, $|z_1| = 3$

$$24. \pm (1 + 2i)$$
 25.