ASSIGNMENT

BINOMIAL THEOREM

Class -XI

1. Expand the following by Binomial theorem:
(i) $(x+1 / x)^{7}$
(IV) $\left(1+\frac{X}{2}-\frac{2}{X}\right)^{4}$
(ii) $\left(x^{2}+\frac{2}{x}\right)^{4}, x \neq 0$
$\left(1+\mathrm{X}+X^{2}\right)^{5}$
(iii) $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{6}$
2. The first three terms in the expansion of $(1+X)^{\mathrm{n}}$ are $1,10, \& 40$. Find the expansion.
3. IF the coefficient of $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ terms in the expansion of $(1+x)^{2 n}$ are in A.P., show that $2 n^{2}-9 n+7=0$.
4. In the expression of $(1+x)^{n}$ three successive co-efficient are $462,330, \& 165$ respectively. Find the value of $n \& r$.
5. Using binomial theorem, prove that $\left(3^{2 n+2}-8 n-9\right)$ is divisible by 64 , where n is a positive integer.
6. Find the co-efficient of x^{4} in the expansion of $(1+x)^{n}(1-x)^{n}$.
7. If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, Prove that the co-efficient is $\frac{(2 n)!}{\left[\frac{4 n-p)}{3}\right]!\left[\frac{1}{3}(2 n+p)\right]!}$.
8. Find the value of r, if the coefficient of $(2 r+4)^{\text {th }} \&(r-2)^{\text {th }}$ term in the expansion of $(1+\mathrm{x})^{18}$ are equal.
9. If A be the sum of odd terms and B be the sum of even terms in the expansion of $(x+a)^{n}$, Prove that
(i) $\mathrm{A}^{2}-\mathrm{B}^{2}=\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)^{n}$
(ii) $\quad 2\left(A^{2}+B^{2}\right)=(x+a)^{2 n}+(x-a)^{2 n}$
10. Show that: $\quad(101)^{50}>(100)^{50}+(99)^{50}$

Downloaded from www.studiestoday.com

11. Find the fifth term from the end in the expansion of $\left(\frac{x^{3}}{2}-\frac{2}{x^{2}}\right)^{9}$.
12. In the binomial of $(a+b)^{m}, m \geq 5$, the sum of $5^{\text {th }} \& 6^{\text {th }}$ terms is zero. Then find $\frac{a}{b}$.
13. If the co-efficient of three consecutive terms in the expansion of $(1+x)^{n}$ are in the ratio 182:84:30. prove that $\mathrm{n}=18$.
14. Given that the fourth term in the expansion of $\left(p x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, find n, p.
15. Find the value of k so that the term independent of x in $\left(\sqrt{x}+\frac{k}{x^{2}}\right)^{10}$ is 405 .
16. If $a, b, c, \& d$ be the four consecutive terms in expansion of $(1+x)^{n}$, prove that

$$
\frac{a}{a+b}+\frac{c}{c+d}=\frac{2 b}{b+c} .
$$

17. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1.3 .5(2 n-1)}{n!}(-2)^{n}$.
18. If there is a term independent of x in $\left(x+\frac{1}{x^{2}}\right)^{n}$, show that it is equal to $\frac{n!}{\left(\frac{n}{3}\right)!\left(\frac{2 n}{3}\right)!}$.
19. If n is a positive integer, show that $2^{5 n+6}-31 n-32$ is divisible by 961 if $\mathrm{n}>1$.
20. If three consecutive coefficient in the expansion of $(1+x)^{n}$ are in the ratio 6:33:110. Find $n \& r$.
21. Find the sixth term from end in the expansion of $\left(x-\frac{1}{x}\right)^{10}$.

Answer Key:

(I) $x^{7}+7 x^{5}+21 x^{3}+35 x+35 / x+21 / x^{3}+7 / x^{5}+1 / x^{7}$
(II) $\mathrm{x}^{8+} 8 \mathrm{x}^{5}+24 \mathrm{x}^{2}+32 / \mathrm{x}+16$
(III) $\frac{64}{129} x^{6}-\frac{32}{27} x^{4}+\frac{20}{3} x^{2}-20+\frac{135}{4 x^{2}}-\frac{243}{8 x^{4}}+\frac{729}{64 x^{6}}$.
2. $n=5, x=2,(1+x)^{5}$.
4. $n=11, r=7$
11. $-252 \mathrm{x}^{2}$
12. $\mathrm{a} / \mathrm{b}=\frac{n-4}{5}$
13. 41
14. $\mathrm{n}=6, \mathrm{p}=1 / 2$
15. $K= \pm 3$
20. $\mathrm{n}=12, \mathrm{r}=2$
21. $-20_{C_{5}}$

