Downloaded from www.studiestoday.com

ASSIGNMENT

BINOMIAL THEOREM

Class -XI

1. Expand the following by Binomial theorem:

(i)
$$(x+1/x)^7$$

(IV)
$$(1+\frac{x}{2}-\frac{2}{x})^4$$

(ii)
$$\left(x^2 + \frac{2}{x}\right)^4, x \neq 0$$
 $(1+X+X^2)^5$

$$(1+X+X^2)^5$$

(iii)
$$(\frac{2x}{3} - \frac{3}{2x})^6$$

- 2. The first three terms in the expansion of $(1+X)^n$ are 1, 10, & 40. Find the expansion.
- 3. IF the coefficient of 2^{nd} , 3^{rd} , 4^{th} terms in the expansion of $(1+x)^{2n}$ are in A.P., show that $2n^2-9n+7=0$.
- 4. In the expression of $(1+x)^n$ three successive co-efficient are 462, 330, & 165 respectively. Find the value of n & r.
- 5. Using binomial theorem, prove that $(3^{2n+2}-8n-9)$ is divisible by 64, where n is a positive integer.
- 6. Find the co-efficient of x^4 in the expansion of $(1+x)^n (1-x)^n$.
- 7. If x^p occurs in the expansion of $(x^2 + \frac{1}{x})^{2n}$, Prove that the co-efficient is $\frac{(2n)!}{\left[\frac{(4n-p)}{3}\right]!\left[\frac{1}{3}(2n+p)\right]!}.$
- 8. Find the value of r, if the coefficient of $(2r+4)^{th}$ & $(r-2)^{th}$ term in the expansion of $(1+x)^{18}$ are equal.
- 9. If A be the sum of odd terms and B be the sum of even terms in the expansion of (x+a)ⁿ, Prove that
 - (i) $A^2-B^2=(x^2-a^2)^n$
 - $2(A^2+B^2) = (x + a)^{2n} + (x a)^{2n}$ (ii)
- 10. Show that : $(101)^{50} > (100)^{50} + (99)^{50}$

Downloaded from www.studiestoday.com

- 11. Find the fifth term from the end in the expansion of $\left(\frac{x^3}{2} \frac{2}{r^2}\right)^9$.
- 12. In the binomial of $(a+b)^m$, $m \ge 5$, the sum of $5^{th} \& 6^{th}$ terms is zero. Then find $\frac{a}{b}$.
- 13. If the co-efficient of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 182:84:30. prove that n = 18.
- 14. Given that the fourth term in the expansion of $\left(px + \frac{1}{r}\right)^n$ is $\frac{5}{2}$, find n, p.
- 15. Find the value of k so that the term independent of x in $\left(\sqrt{x} + \frac{k}{x^2}\right)^{10}$ is 405.
- 16. If a, b, c, & d be the four consecutive terms in expansion of (1+x)ⁿ, prove that

$$\frac{a}{a+b} + \frac{c}{c+d} = \frac{2b}{b+c}.$$

- 17. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2n}$ is $\frac{1\cdot 3\cdot 5\cdot ...\cdot (2n-1)}{n!}(-2)^n$.
- 18. If there is a term independent of x in $\left(x + \frac{1}{x^2}\right)^n$, show that it is equal to $\frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{2n}{2}\right)!}$.
- 19. If n is a positive integer , show that $2^{5n+6} 31n 32$ is divisible by 961 if n > 1.
- 20. If three consecutive coefficient in the expansion of (1+x)ⁿ are in the ratio 6:33:110.Find n & r.
- 21. Find the sixth term from end in the expansion of $(x-\frac{1}{x})^{10}$.

Answer Kev:

(I)
$$x^7 + 7x^5 + 21x^3 + 35x + 35/x + 21/x^3 + 7/x^5 + 1/x^7$$

(II)
$$x^{8+}8x^5+24x^2+32/x+16$$

$${}^{\text{(III)}}\frac{64}{129}x^6 - \frac{32}{27}x^4 + \frac{20}{3}x^2 - 20 + \frac{135}{4x^2} - \frac{243}{8x^4} + \frac{729}{64x^6}$$

2.
$$n=5, x=2, (1+x)^5$$
.

12.
$$a/b = \frac{n-4}{5}$$

14.
$$n=6, p=1/2$$

15.
$$K = \pm 3$$

20. n=12, r =2 21.
$$-20_{C_5}$$

$$21.-20_{C_5}$$