Chapter: - Three Dimensional Geometry, Relations and functions

- **Q1**. (i) If (x-y, 3) = (5, x+y) then find the value of x and y. **Ans**. 4,-1,
 - (ii) If (x+3, 5) = (6, 2x+y) then find the value of x and y. **Ans**. 3,-1,
 - (iii) If (x-1, y+3) = (2, -5) then find the value of x and y. **Ans**. 3,-8,
- **Q2**. If n (A) =p, n (B) =q, n(C) = r and n (D) = s then find (i)n (AxBxCxD) (ii) Number of possible subset of (AxBxCxD)(iii)n[P(AxBxCxD)] (iv) Number of possible relation from A to C (v) Number of possible relation from B to D **Ans**. pqrs, 2^{pqrs}, 2^{pqrs}, 2^{pqr}, 2^{qs},
- **Q3**. If A = $\{1,2,3\}$, B = $\{3,4\}$ and C = $\{1,3,5\}$, find (i)Ax(BUC) (ii) Ax (B \cap C) (iii) (AxB) \cap (BxC), **Ans**.(i) $\{(1,1),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,3),(3,4),(3,5)\}$ (ii) $\{(1,3),(2,3),(3,3)\}$ (iii) $\{(3,3)\}$
- **Q4.** A relation R is defined from a set A = $\{2,3,4,5\}$ to a set B = $\{3,6,7,10\}$ as follows $\{(x,y):x \text{ divides } y\}$. Express R as a set of ordered pairs and determine the domain and range of R. **Ans**. $\{(2,6), (2,10), (3,3), (3,6), (5,10)\}$, $\{2,3,5\},\{3,6,10\}$.
- Q5. Find the domain and range of following functions:-

(i).
$$f(x) = \sqrt{x^2 - 4}$$
,

Ans.
$$(-\infty, 2] \cup [2, \infty), [0, \infty),$$

(ii).
$$f(x) = \frac{1}{\sqrt{9-x^2}}$$
,

Ans.
$$(-3,3)$$
, $[1/3, \infty)$,

(iii).
$$f(x) = \sqrt{1 - x^2}$$
,

(iv).
$$f(x) = 4 \sin x - 3\cos x$$
,

(v).
$$f(x) = 1 + 3\cos 2x$$
,

(vi).
$$f(x) = |x-3|$$
,

Ans. Real Numbers,
$$[0, \infty)$$
,

(vii).
$$f(x) = \frac{x^2}{x^2 + 1}$$
,

(viii)
$$f(x)=3x+7$$
,

(ix)
$$f(x) = x^2 + 1$$
,

Ans. Real Numbers,
$$[1, \infty)$$
,

(x)
$$f(x) = \frac{|x-4|}{x-4}$$
,

Ans.
$$(-\infty, 4] \cup [4, \infty), \{-1, 1\},$$

(xi)
$$f(x) = -|x|$$
,

Ans. Real Numbers,
$$(-\infty, 0)$$
,

(xii)f(x)=
$$\frac{x-2}{x+1}$$
,

Ans.
$$(-\infty, -1) \cup (1, \infty), (-\infty, 1) \cup (1, \infty),$$

- **Q6**.If $A = \{-2, -1, 1, 2\}$ and $f = \{(x, 1/x): x \in A\}$, find domain and range of f. **Ans**. A, $\{-1/2, -1, 1, 1/2\}$.
- **Q7**. Find the domain for which the function $f(x) = 3x^2-1$ and g(x) = 3+x are equal. **Ans**. $\{-1, 4/3\}$
- **Q8**.Let $f(x) = 3x + 4 \ \forall x \in \Re$. If ordered pairs (a, 8) and (2, b) belongs to f. Find a and b. **Ans**. 4/3, 10,

- Q9. Draw the graph of each of following functions is given by:-
 - (i)
- $f(x) = 1/x, x \neq 0$ (ii) f(x) = x|x| (iii) f(x) = |x-2| + |x-3|,
- (iv)
- $f(x) = \sqrt{9 x^2}$, (v) f(x) = x [x], (vi) f(x) = |x|,
- **Q10.** If $A=\{a,b,c\}$, $B=\{d\}$ and $C=\{e\}$. Verify the following:-
 - (i). Ax(BUC)=(AxB)U(AxC),
- (ii)AUB)xC = (AxC)U(AxC)
- **Q11**. Determine the domain and the range of the relation R defined by $R = \{(x+1, x+5): x \in \{0, 1, 2, 3, 4, 5\}\}$, **Ans**. {1,2,3,4,5,6}, {5,6,7,8,9,10}.
- Q12. Is $g = \{(1,1),(2,3),(3,5),(4,7)\}$ a function ?If this is described by the formula g(x) = ax + b then what values should be assigned to a and b? Ans. Yes, 2,-1
- **Q13**.If R is the relation 'is greater than 'from $A = \{2,3,4,5,6\}$ to $B = \{2,5,6\}$. Write R in tabular form, its domain and range. **Ans**. {(3,2), (4,2),(5,2), (6,2),(6,5)}, {3,4,5,6} {2,5}.
- **Q14**. Given A= $\{-1,0,2,5,6,11\}$, B= $\{-2,-1,0,18,28,108\}$ and $f(x)=x^2-x-2$. Find f (A). Is f (A) =B?
- **Ans**. {0,-2, 18, 28,108}.No.
- **Q15**. Show that the points (-2,6,-2), (0,4,-1), (-2,3,1) and (-4,5,0) are vertices of the square.
- Q16. Find the ratio in which the line segment joining the points (2, 4, -3) and (-3, 5, 4) is divided by (i) the xy plane (ii) the plane x+y+z=8. **Ans**. 3:4 internally, 5:2 externally
- Q17. Show that the three points A (1,-2,-8), B (5, 0,-2) and C (11, 3, 7) are collinear. Find the ratio in which B divides AC. Ans. 2:3
- Q18. A is a point (1, 3, 4) and B is the point (1,-2,-1). A point P moves so that 3PA= 2PB. Find the locus of P. **Ans.** $5x^2+5y^2+5z^2-10x-70y-80z+210=0$.
- Q19. Show that the points A (0, 1, 2), B (2,-1, 3) and C (1,-3, 1) are vertices of an isosceles right angled triangle.
- **Q20**. Show that the points A (1,3,4), B(-1,6,10) and C(-7,4,7) and (-5,1,1) are the vertices of a rhombus.
- **Q21.** Find the point on z-axis which is equidistant from (1, 5, 7) and (5, 1, -4). **Ans.** (0, 0, 3/2).
- **Q22**. Find the value of p such that distance between the points (4, 5, p) and (7, 1, -3) is 13. **Ans**. -15 or 9.
- Q23. Three vertices of a parallelogram ABCD are A (3, 4, 6), B (-1, 0, 6) and C (5, 2, 0). Find the coordinate of D. Ans. (9, 6, 0).
- **Q24.** Find the distance of the point (1,2,0) from the point where line joining A (2,-3,1) and B (3,-4,-5) cuts the plane 2x+y+z=7. Ans. $\frac{\sqrt{281}}{3}$
- **Q25**. The mid points of the sides of the triangle are (1, 5, -1), (0, 4, -2) and (2, 3, 4). Find its vertices. **Ans.** (1, 2, -1)3), (3, 4, 5) and (-1, 6,-7).
- Q26. Determine the point in xy-plane which is equidistant from three points A (2, 0, 3), B (0, 3, 2) and C (0, 0, 1). Ans. (3, 2, 0).

-----Best of Luck-----