Downloaded from www.studiestoday.com

Chapter: - Three Dimensional Geometry, Relations and functions

Q1. (i) If $(x-y, 3)=(5, x+y)$ then find the value of x and y. Ans. $4,-1$,
(ii) If $(x+3,5)=(6,2 x+y)$ then find the value of x and y. Ans. $3,-1$,
(iii) If $(x-1, y+3)=(2,-5)$ then find the value of x and y. Ans. $3,-8$,

Q2. If $n(A)=p, n(B)=q, n(C)=r$ and $n(D)=s$ then find (i) $n(A x B x C x D)$ (ii) Number of possible subset of (AxBxCxD)(iii)n[P(AxBxCxD)] (iv) Number of possible relation from A to $C(v)$ Number of possible relation from B to D Ans. pqrs, $2^{\text {pqrs }}, 2^{\text {pqrs }}, 2^{\text {pr }}, 2^{\text {qs }}$,

Q3. If $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{1,3,5\}$, find (i)Ax(BUC) (ii) $A x(B \cap C)$ (iii) (AxB) $\cap(B x C)$, Ans.(i) $\{(1,1),(1,3)$, $(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,3),(3,4),(3,5)\}$ (ii) $\{(1,3),(2,3),(3,3)\}$ (iii) $\{(3,3)\}$

Q4. A relation R is defined from a set $A=\{2,3,4,5\}$ to a set $B=\{3,6,7,10\}$ as follows $\{(x, y): x$ divides $y\}$. Express R as a set of ordered pairs and determine the domain and range of R. Ans. $\{(2,6),(2,10),(3,3),(3,6),(5,10)\}$, $\{2,3,5\},\{3,6,10\}$.

Q5. Find the domain and range of following functions:-
(i). $f(x)=\sqrt{x^{2}-4}$,
Ans. $(-\infty, 2] \cup[2, \infty),[0, \infty)$,
(ii). $f(x)=\frac{1}{\sqrt{9-x^{2}}}$,
Ans. $(-3,3),[1 / 3, \infty)$,
(iii). $f(x)=\sqrt{1-x^{2}}$,

Ans. $(-1,1),[0,1]$,
(iv). $f(x)=4 \sin x-3 \cos x$,

Ans. Real Numbers, [-5,5],
(v). $f(x)=1+3 \cos 2 x$,

Ans. Real Numbers, $[-2,4]$,
(vi). $\mathrm{f}(\mathrm{x})=|x-3|$,

Ans. Real Numbers, $[0, \infty)$,
(vii). $\mathrm{f}(\mathrm{x})=\frac{x^{2}}{x^{2}+1}, \quad \quad$ Ans. Real Numbers, $[0,1)$,
(viii) $f(x)=3 x+7$,

Ans. Real Numbers, Real Numbers,
(ix) $f(x)=x^{2}+1$,

Ans. Real Numbers, $[1, \infty)$,
(x) $f(x)=\frac{|x-4|}{x-4}$,

Ans. $(-\infty, 4] \cup[4, \infty),\{-1,1\}$,
(xi) $f(x)=-|x|$,

Ans. Real Numbers, $(-\infty, 0)$,
(xii) $\mathrm{f}(\mathrm{x})=\frac{x-2}{x+1}$,

Ans. $(-\infty,-1) \cup(1, \infty),(-\infty, 1) \cup(1, \infty)$,

Q6.If $A=\{-2,-1,1,2\}$ and $f=\{(x, 1 / x): x \in A\}$, find domain and range of f. Ans. $A,\{-1 / 2,-1,1,1 / 2\}$.
Q7. Find the domain for which the function $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal. Ans. $\{-1,4 / 3\}$
Q8.Let $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+4 \forall x \in \mathfrak{R}$. If ordered pairs $(\mathrm{a}, 8)$ and $(2, \mathrm{~b})$ belongs to f . Find a and b . Ans. $4 / 3,10$,

Downloaded from www.studiestoday.com

Q9. Draw the graph of each of following functions is given by:-
(i) $f(x)=1 / x, x \neq 0$
(ii) $\mathrm{f}(\mathrm{x})=\mathrm{x}|x|$
(iii) $\mathrm{f}(\mathrm{x})=|x-2|+|x-3|$,
(iv) $\mathrm{f}(\mathrm{x})=\sqrt{9-x^{2}}$,
(v) $f(x)=x-[x]$,
(vi) $\mathrm{f}(\mathrm{x})=|x|$,

Q10. If $A=\{a, b, c\}, B=\{d\}$ and $C=\{e\}$. Verify the following:-
(i). $A x(B \cup C)=(A x B) U(A x C)$,
(ii) $A \cup B) \times C=(A x C) U(A x C)$,

Q11. Determine the domain and the range of the relation R defined by $R=\{(x+1, x+5): x \in\{0,1,2,3,4,5\}\}$, Ans. $\{1,2,3,4,5,6\},\{5,6,7,8,9,10\}$.

Q12. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function ?lf this is described by the formula $g(x)=a x+b$ then what values should be assigned to a and b ? Ans. Yes, 2,-1

Q13.If R is the relation 'is greater than ' from $A=\{2,3,4,5,6\}$ to $B=\{2,5,6\}$. Write R in tabular form, its domain and range. Ans. $\{(3,2),(4,2),(5,2),(6,2),(6,5)\},\{3,4,5,6\}\{2,5\}$.

Q14. Given $A=\{-1,0,2,5,6,11\}, B=\{-2,-1,0,18,28,108\}$ and $f(x)=x^{2}-x-2$. Find $f(A)$. Is $f(A)=B$?
Ans. $\{0,-2,18,28,108\}$.No.
Q15. Show that the points $(-2,6,-2),(0,4,-1),(-2,3,1)$ and $(-4,5,0)$ are vertices of the square.
Q16. Find the ratio in which the line segment joining the points $(2,4,-3)$ and $(-3,5,4)$ is divided by (i) the $x y$ plane (ii) the plane $x+y+z=8$. Ans. 3:4 internally, 5:2 externally

Q17. Show that the three points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear. Find the ratio in which B divides AC. Ans. 2:3

Q18. A is a point $(1,3,4)$ and B is the point $(1,-2,-1)$. A point P moves so that $3 P A=2 P B$. Find the locus of P.
Ans. $5 x^{2}+5 y^{2}+5 z^{2}-10 x-70 y-80 z+210=0$.
Q19. Show that the points $A(0,1,2), B(2,-1,3)$ and $C(1,-3,1)$ are vertices of an isosceles right angled triangle.

Q20. Show that the points $A(1,3,4), B(-1,6,10)$ and $C(-7,4,7)$ and $(-5,1,1)$ are the vertices of a rhombus.
Q21. Find the point on z-axis which is equidistant from ($1,5,7$) and ($5,1,-4$). Ans. ($0,0,3 / 2$).
Q22. Find the value of p such that distance between the points $(4,5, p)$ and $(7,1,-3)$ is 13 . Ans. -15 or 9 .
Q23.Three vertices of a parallelogram ABCD are $A(3,4,6), B(-1,0,6)$ and $C(5,2,0)$. Find the coordinate of D. Ans. $(9,6,0)$.

Q24. Find the distance of the point ($1,2,0$)from the point where line joining $A(2,-3,1)$ and $B(3,-4,-5)$ cuts the plane $2 x+y+z=7$. Ans. $\frac{\sqrt{281}}{3}$.

Q25. The mid points of the sides of the triangle are ($1,5,-1$), ($0,4,-2$) and ($2,3,4$). Find its vertices. Ans. (1,2 , $3),(3,4,5)$ and ($-1,6,-7$).

Q26. Determine the point in $x y$-plane which is equidistant from three points $A(2,0,3), B(0,3,2)$ and $C(0,0$, 1). Ans. (3, 2, 0).

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

