

	CBSE Class 11 Straight Lines worksheet
	Class 11 th
Q.1)	The perpendicular from the origin to the line $y=mx+c$ meets it at the point (-1, 2). Find the value of m and c .
Sol.1)	Equation of $AB = y = mx + c$
	Slope of $AB = m$
	Slope of $CD = \frac{2-0}{-10} = -2$ $m = \frac{y_2 - y_1}{x_2 - x_1}$
	Since $CD \perp AB$
	\therefore Slope of $AB = \frac{1}{2}$ $-ve\ respectively$
	$m=rac{1}{2}$ (since slope of AB is also m)
	\therefore equation of line AB becomes
	$y = \frac{1}{2}x + c$
	$\Rightarrow 2y = x + 2c$
	$\Rightarrow x - 2y + 2c = 0$
	This line passes through point $D(-1,2)$
	$\therefore -1-4+2c=0$
	$\Rightarrow c = \frac{5}{2}$
	$\therefore m=1$ and $c=rac{5}{2}$ ans.
Q.2)	Assuming that straight lines work as a plane mirror for a point in the line $x - 3y + 4 = 0$.
Sol.2)	Let $P'(a,b)$ is the image of point $P(1,2)$ equation of line $AB: x-3y=-4$ (given) (i)
	Slope of $AB = -\frac{1}{-3} = \frac{1}{3}$ $\left\{ m = \frac{-\text{coefficient of } x}{\text{coefficient of } y} \right\}$
	Since $PQ \perp AB$
	\therefore Slope of $PQ = -3$ $-ve\ respectively$

Now equation of PQ (point slope form, point P(1,2) slope =-3) y - 2 = -3(x - 1)y - 2 = -3x + 3 $\Rightarrow 3x + y = 5$ (ii) P'(a, b) Solving equation (i) & (ii) We get $x = \frac{11}{10}$ And $y = \frac{17}{10}$ Now θ is the mid-point of P(1,2) & P'(a,b)By mid-point formula, $\frac{11}{10} = \frac{1+a}{2} \text{ And } \frac{17}{10} = \frac{2+b}{2}$ $\Rightarrow 22 = 10 + 10a \text{ and } 34 = 20 + 10b$ $\Rightarrow a = \frac{6}{5}$ $\Rightarrow b = \frac{7}{5}$ \therefore image is $P'\left(\frac{6}{5},\frac{7}{5}\right)$ Ans. Show that the area of the triangle formed by the lines $y=m_1x+c_1$; $y=m_2x+c_2$ And Q.3) x = 0 is $\frac{(c_1 - c_2)^2}{2|m_1 - m_2|}$ Equation of AC: x = 0Sol.3)(i) Equation of AB: $y=m_1x+c_1$ (ii) Equation of BC: $y=m_2x+c_2$ (iii) Point A is the intersection point of side AB & AC ∴ solving (i) & (ii) We get x = 0 and $y = c_1$ $\therefore A(0,c_2)$ Point B is the intersection point of AB & BC Solving (ii) & (iii) Solving (ii) & (iii) $m_1x + c_1 = m_2x + c_2$ $\Rightarrow x(m_1 - m_2) = c_2 - c_1$ $\Rightarrow x = \left(\frac{c_2 - c_1}{m_1 - m_2}\right) + c_1$ $\Rightarrow y = \frac{m_1c_2 - m_1c_1 + m_1c_1 - m_2c_1}{m_1 - m_2}$ $\Rightarrow y = \frac{m_1c_1 - m_2c_1}{m_1 - m_2}$ $\therefore B\left(\frac{c_2 - c_1}{m_1 - m_2}, \frac{m_1c_2 - m_2c_1}{m_1 - m_2}\right)$ Point C is the intersection point. Point C is the intersection point of side AC & BC ∴ solving (i) & (iii) We get x = 0 and $y = c_2$ $y = m_2 x + c_2$ $\therefore A(0_1c_1), B\left(\frac{c_2-c_1}{m_1-m_2}, \frac{m_1c_2-m_2c_1}{m_1-m_2}\right), C(0_1c_2)$ $= \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$

г	
	$ = -\frac{1}{2} \left 0(y_2 - y_3) + \frac{c_2 - c_1}{m_1 - m_2} (c_2 - c_1) + 0(y_1 - y_2) \right $
	$= \frac{1}{2} \left \frac{(c_2 - c_1)}{m_1 - m_2} \right $
	Area = $\frac{1}{2} \frac{(c_2 - c_1)}{ m_1 - m_2 }$ Ans.
Q.4)	Find the distance of the line $4x - y = 0$ from the point $P(4, 1)$ measured along the line
	making an angle of 135° with $+ve\ X-axis$.
Sol.4)	Slope of line $l(4x - y) = 0 = \frac{-4}{-1} = 4$
	Slope of $PQ = \tan(135)$
	$= \tan(180 - 45)$
	$= -\tan(45) = -1$
	Equation of line PQ (point slope form, point $P(4,1)$, $m=-1$)
	y-1 = -1(x-4)
	y-1 = -x + 4 $\Rightarrow x + y = 5$ (i)
	$\Rightarrow x + y = 5$ (i) Equation of given line (L): $4x - y = 0$ (ii)
	Solving (i) and (ii) $y = 0$
	y = 1 and $y = 4$
	$\therefore \text{ coordinate of } Q \text{ is } (1,4)$
	Required distance $PQ = \sqrt{3^2 + 3^2}$
	$= \sqrt{18} = 3\sqrt{2} \text{ units} \text{ans.}$
Q.5)	Two lines passing through the point $(2,3)$ intersects each other at an angle of 60° . If the
	slope of one line is 2. Find the equation of other line.
Sol.5)	Slope of one line: $m_1 = 2$
	Let slope of required line: $m_2 = m$
	Angle between them is $\theta = 60^{\circ}$
	We have, $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $
	$\Rightarrow \tan 60^{\circ} = \left \frac{2-m}{1+2m} \right $
	$\Rightarrow \sqrt{3} = \left \frac{2-m}{1+2m} \right $
	$\Rightarrow \pm \sqrt{3} = \left \frac{1+2m}{1+2m} \right \qquad \dots \dots \dots \text{ (if } x = y \text{ then } x = \pm y \text{)}$
	Case 1: $\sqrt{3} = \frac{2-m}{1+2m}$ Case 2: $-\sqrt{3} = \left \frac{2-m}{1+2m} \right $
	$\begin{vmatrix} 1 + 2m \\ \Rightarrow \sqrt{3} + 2\sqrt{3}m = 2 - m \end{vmatrix} - \sqrt{3} - 2\sqrt{3}m = 2 - m$
	$\Rightarrow 2\sqrt{3}m + m = 2 - \sqrt{3}$ $\Rightarrow 2\sqrt{3}m + m = 2 - \sqrt{3}$ $-2 - \sqrt{3} = 2\sqrt{3}m - m$
	$\Rightarrow m(2\sqrt{3} + 1) = 2 - \sqrt{3} $ $-2 - \sqrt{3} = m(2\sqrt{3} - 1)$
	$\Rightarrow m = \frac{2 - \sqrt{3}}{2\sqrt{3} + 1} \qquad \Rightarrow m = \frac{-2 - \sqrt{3}}{2\sqrt{3} - 1}$
	Case 1: equation of required line (point slope form) l_1
	$y-3=\frac{2-\sqrt{3}}{2\sqrt{3}+1}(x-2)$ $m_2=1$
	$\begin{vmatrix} y & 3 - \frac{1}{2\sqrt{3} + 1}(x - 2) \\ \Rightarrow (2\sqrt{3} + 1)y - 6\sqrt{3} - 3 = (2 - \sqrt{3})x - 4 + 2\sqrt{3} \end{vmatrix}$ $m_1 = 2$ 60°
	$\Rightarrow (2 - \sqrt{3})x - (2\sqrt{3} + 1)y + 8\sqrt{3} - 1 = 0 \text{ans.} $ (2, 3)
	Case 2: equation of required line (point slope form)
	$y - 3 = \left(\frac{-2 - \sqrt{3}}{2\sqrt{2} - 1}\right)(x - 2)$
	(2/3-1)
	$(2\sqrt{3} - 1)y - 6\sqrt{3} + 3 = (-2 - \sqrt{3})x + 4 + 2\sqrt{3}$
	$\Rightarrow (2 + \sqrt{3})x + (2\sqrt{3} - 1)y = 8\sqrt{3} + 1$ ans.

Q.6)	Show that the equation of the line passing through the origin & making an angle $ heta$ with
α.σ,	
6 1 6)	the line $y = mx + c$ is $\frac{y}{x} = \frac{m \pm \tan \theta}{1 \mp m \tan \theta}$.
Sol.6)	Equation of given line $y = mx + c$
	Slope of given line $= m(m_1)$
	Let slope of required line $M(m_2)$
	Angle between them $= \theta$
	We have, $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $
	$\Rightarrow \tan \theta = \left \frac{m - M}{1 + mM} \right $
	$\Rightarrow \tan \theta = \frac{m-M}{1+mM}$
	Case 1: $\tan \theta = \frac{m-M}{1+mM}$ Case 2: $-\tan \theta = \frac{m-M}{1+mM}$
	$\Rightarrow \tan \theta + mM \tan \theta = m - M$ $-\tan \theta - mM \tan \theta = m - M$
	$\Rightarrow \tan \theta + mm \tan \theta = m - \tan \theta$ $\Rightarrow M + mM \tan \theta = m - \tan \theta$ $M - mM \tan \theta = m + \tan \theta$
	$\Rightarrow M + mm \tan \theta = m - \tan \theta$ $\Rightarrow M(1 + m \tan \theta) = m - \tan \theta$ $M(1 - m \tan \theta) = m + \tan \theta$
	$\Rightarrow M = \frac{m - \tan \theta}{1 + m \tan \theta} \qquad \Rightarrow M = \frac{m \pm \tan \theta}{1 - m \tan \theta}$
	$M = \frac{m \pm \tan \theta}{1 \mp m \pm an \theta}$
	Now, equation of required line: (point slope form, point (0,0), slope = M)
	$a = 0 = \frac{m \pm \tan \theta}{m \pm \tan \theta}$ (x 0)
	$y - 0 = \frac{m \pm \tan \theta}{1 - m \tan \theta} (x - 0)$
	$\Rightarrow \frac{y}{x} = \frac{m \pm \tan \theta}{1 - m \tan \theta} \qquad \text{Ans.}$
Q.7)	Point $R(h,k)$ divides a line segment between the axis in the ratio 1:2. Find the equation
	of line.
Sol.7)	Let $A(x,0)$ and $B(0,y)$
	R divides AB in ratio 1: 2
	By section formula,
	$h = \frac{2x+0}{2+1}$ And $k = \frac{0+y}{2+1}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\Rightarrow x = \frac{1}{2}$ And $y = 3k$
	$\therefore A(\frac{3h}{2},0) \text{ and } B(0,3k)$
	$\Rightarrow X \text{ intercept: } a = \frac{3h}{2} \text{ And } Y \text{ intercept: } b = 3k$
	2
	By intercept form,
	$\left \frac{a}{a} + \frac{b}{b} = 1\right $
	$\begin{vmatrix} \frac{x}{a} + \frac{y}{b} = 1 \\ \Rightarrow \frac{x}{\frac{3h}{2}} = \frac{y}{3k} = 1 \end{vmatrix}$ $(x, 0)^{A}$
	$\frac{3k}{2} = 3k$ $(x,0)^{A} = x$
	$\Rightarrow \frac{2x}{3h} + \frac{y}{3k} = 1$
	$\Rightarrow 2x + y = 3k$ ans.
Q.8)	Find the point on $Y - axis$ whose distance from the line $\frac{x}{3} + \frac{y}{4} = 1$ is 4 units.
0.16	5 .
Sol.8)	Equation of given line $\frac{x}{3} + \frac{y}{4} = 1$
	$\Rightarrow 4x + 3y = 12$
	$\Rightarrow 4x + 3y - 12 = 0$
	Let point on the $Y - axis$ is $(0, y)$ distance = 4 (given)
	Distance between point and line is $=\frac{ ax_1+by_1+c }{\sqrt{a^2+b^2}}$
	Here, distance = 4, point (0, y) & line: $4x + 3y - 12 = 0$
	There, distance -4 , point $(0, y)$ \propto line. $4x + 3y - 12 - 0$

$$\Rightarrow 4 = \frac{|0+3y-12|}{\sqrt{16+9}}$$

$$\Rightarrow 20 = |3y-12|$$

$$\Rightarrow 20 = 3y-12$$

$$\Rightarrow 20 = 3y-12$$

$$\Rightarrow 3y=32 \text{ and } 3y=-8$$

$$\Rightarrow y = \frac{32}{3} \text{ And } y = \frac{-8}{3}$$

$$\therefore \text{ the required points are } (0, \frac{32}{3}) \text{ and } (0, \frac{-8}{3}) \text{ ans.}$$

$$Q.9) \quad \text{If } p \text{ is the length of perpendicular from the origin to the line whose intercepts on the axis are $a \otimes b$. Show that $\frac{1}{p^2} = \frac{1}{a^3} + \frac{1}{b^2}$.

Sol.9) \quad \text{Let equation of line is } \frac{x}{b} = \frac{y}{b} = 1 \\
\Rightarrow bx + ay - ab = 0
\end{arrow}

Point (0,0); distance= p and line: $bx + ay - ab = 0$
By distance formula,
$$p = \frac{|0+0-ab|}{\sqrt{b^2+a^2}}$$

$$\Rightarrow p = \frac{a^3b^2}{\sqrt{b^2+a^2}}$$

$$\Rightarrow p = \frac{a^3b^2}{b^2+a^2}$$

$$\Rightarrow \frac{1}{p^2} = \frac{a^3b^2}{a^2b^2} + \frac{a^2b}{a^2b^2}$$

$$\Rightarrow \frac{1}{p^2} = \frac{a^3b^2}{a^3b^2} + \frac{a^2b}{a^2b^2}$$

$$\Rightarrow \frac{1}{p^2} = \frac{b^3b^2}{a^3b^2} + \frac{a^2b^2}{a^3b^2}$$

$$\Rightarrow p = k\cos(2\theta)$$

$$\Rightarrow p = k\cos(2\theta)$$

$$\Rightarrow p = k\cos(2\theta)$$

$$\Rightarrow q = \frac{k}{a^3\cos\theta}$$

$$\Rightarrow q = \frac{k}{a^3\cos\theta}$$$$

Copyright © www.studiestoday.com All rights reserved. N reproduced, distributed, or transmitted in any form or by ar recording, or other electronic or mechanical methods, with


```
\Rightarrow q = \frac{k}{\frac{1}{\sin\theta \cdot \cos\theta}}
\Rightarrow q = k \sin\theta \cos\theta
Taking L.H.S.
p^2 + 4q^2
= k^2 \cos^2(2\theta) + 4k^2 \sin^2\theta \cdot \cos^2\theta
= k^2[\cos^2(2\theta) + 4\sin^2\theta \cdot \cos^2\theta]
= k^2[\cos^2(2\theta) + (2\sin\theta\cos\theta)^2]
= k^2[\cos^2(2\theta) + \sin^2(2\theta)] \qquad \qquad \{\because 2\sin\theta\cos\theta = \sin(2\theta)\}
= k^2(1) \qquad \qquad \{\sin^2\theta + \cos^2\theta = 1\}
= k^2 \text{ (proved)}
```

MMM. Studilestoday. Colfin