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 CBSE Class 11 Straight Lines worksheet 

Class 11th 
Q.1) The perpendicular from the origin to the line 𝑦 = 𝑚𝑥 + 𝑐 meets it at the point (-1, 2). 

Find the value of 𝑚 and 𝑐. 

Sol.1) Equation of 𝐴𝐵 = 𝑦 = 𝑚𝑥 + 𝑐 

Slope of 𝐴𝐵 = 𝑚 

Slope of 𝐶𝐷 =
2−0

−10
= −2 ……… 𝑚 =

𝑦2−𝑦1

𝑥2−𝑥1
 

Since 𝐶𝐷 ⊥ AB 

∴ Slope of 𝐴𝐵 =
1

2
  ……… −𝑣𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝑚 =
1

2
    ……………. (since slope of AB is also 𝑚 ) 

∴ equation of line 𝐴𝐵 becomes  

𝑦 =
1

2
𝑥 + 𝑐  

⇒ 2𝑦 = 𝑥 + 2𝑐 

⇒ 𝑥 − 2𝑦 + 2𝑐 = 0 

This line passes through point 𝐷(−1, 2) 

∴  −1 − 4 + 2𝑐 = 0  

⇒ 𝑐 =
5

2
 

∴ 𝑚 = 1 and 𝑐 =
5

2
 ans. 

Q.2) Assuming that straight lines work as a plane mirror for a point in the line 𝑥 − 3𝑦 + 4 =

0. 

Sol.2) Let 𝑃′(𝑎, 𝑏) is the image of point 𝑃(1, 2) equation of line 𝐴𝐵: 𝑥 − 3𝑦 = −4 (given)

 …… (i) 

Slope of 𝐴𝐵 = −
1

−3
=

1

3
  …………{𝑚 =

− 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑦
} 

Since 𝑃𝑄 ⊥ AB 

∴ Slope of 𝑃𝑄 = −3  ……… −𝑣𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 
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Now equation of 𝑃𝑄 (point slope form , point 𝑃(1,2) slope = −3 ) 

𝑦 − 2 = −3(𝑥 − 1)  

𝑦 − 2 = −3𝑥 + 3  

⇒ 3𝑥 + 𝑦 = 5  ……….. (ii) 
Solving equation (i) & (ii) 

We get 𝑥 =
11

10
 And 𝑦 =

17

10
 

∴  𝜃 (
11

10
 ,

17

10
)  

Now 𝜃 is the mid-point of 𝑃(1, 2) & 𝑃′(𝑎, 𝑏) 
By mid-point formula, 
11

10
=

1+𝑎

2
 And 

17

10
=

2+𝑏

2
 

⇒ 22 = 10 + 10𝑎 and 34 = 20 + 10𝑏 

⇒ 𝑎 =
6

5
 ⇒ 𝑏 =

7

5
 

∴ image is 𝑃′ (
6

5
 ,

7

5
) Ans. 

Q.3) Show that the area of the triangle formed by the lines 𝑦 = 𝑚1𝑥 + 𝑐1 ; 𝑦 = 𝑚2𝑥 + 𝑐2 And 

𝑥 = 0 is 
(𝑐1−𝑐2)2

2|𝑚1−𝑚2|
 

Sol.3) Equation of 𝐴𝐶: 𝑥 = 0   ………… (i) 
Equation of 𝐴𝐵: 𝑦 = 𝑚1𝑥 + 𝑐1   …………. (ii) 
Equation of 𝐵𝐶: 𝑦 = 𝑚2𝑥 + 𝑐2  …………. (iii) 
Point 𝐴 is the intersection point of side 𝐴𝐵 & 𝐴𝐶  
∴ solving (i) & (ii) 
We get 𝑥 = 0 and 𝑦 = 𝑐1 
∴ 𝐴(0, 𝑐2)  
Point 𝐵 is the intersection point of 𝐴𝐵 & 𝐵𝐶 
Solving (ii) & (iii) 
𝑚1𝑥 + 𝑐1 = 𝑚2𝑥 + 𝑐2  
⇒ 𝑥(𝑚1 − 𝑚2) = 𝑐2 − 𝑐1  

⇒ 𝑥 = (
𝑐2−𝑐1

𝑚1−𝑚2
) + 𝑐1 

⇒ 𝑦 =
𝑚1𝑐2−𝑚1𝑐1+𝑚1𝑐1−𝑚2𝑐1

𝑚1−𝑚2
 

⇒ 𝑦 =
𝑚1𝑐1−𝑚2𝑐1

𝑚1−𝑚2
 

∴ 𝐵 (
𝑐2−𝑐1

𝑚1−𝑚2
,

𝑚1𝑐2−𝑚2𝑐1

𝑚1−𝑚2
)  

Point 𝐶 is the intersection point of side 𝐴𝐶 & 𝐵𝐶 
∴ solving (i) & (iii) 
We get 𝑥 = 0 and 𝑦 = 𝑐2 
∴ 𝐶(0, 𝑐2)   

∴ 𝐴(01𝑐1), 𝐵 (
𝑐2−𝑐1

𝑚1−𝑚2
,

𝑚1𝑐2−𝑚2𝑐1

𝑚1−𝑚2
) , 𝐶(01𝑐2)  

Now area of ΔABC is  

=
1

2
|𝑥1(𝑦2 − 𝑦3) + 𝑥2(𝑦3 − 𝑦1) + 𝑥3(𝑦1 − 𝑦2)|  
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= −
1

2
|0(𝑦2 − 𝑦3) +

𝑐2−𝑐1

𝑚1−𝑚2
(𝑐2 − 𝑐1) + 0(𝑦1 − 𝑦2)|   

=
1

2
|

(𝑐2−𝑐1)

𝑚1−𝑚2
|  

Area =
1

2

(𝑐2−𝑐1)

|𝑚1−𝑚2|
 Ans. 

Q.4) Find the distance of the line 4𝑥 − 𝑦 = 0 from the point 𝑃(4, 1) measured along the line 

making an angle of 135° with +𝑣𝑒 𝑋 − 𝑎𝑥𝑖𝑠. 

Sol.4) Slope of line 𝑙(4𝑥 − 𝑦) = 0 =
−4

−1
= 4 

Slope of 𝑃𝑄 = tan(135) 
 = tan(180 − 45) 
 = − tan(45) = −1 
Equation of line 𝑃𝑄 (point slope form, point 𝑃(4,1), 𝑚 = −1 ) 
𝑦 − 1 = −1(𝑥 − 4)  
𝑦 − 1 = −𝑥 + 4  
⇒ 𝑥 + 𝑦 = 5  …………. (i) 
Equation of given line (L): 4x − y = 0 ……………. (ii) 
Solving (i) and (ii) 
𝑥 = 1 and 𝑦 = 4 
∴ coordinate of 𝑄 is (1, 4) 

Required distance 𝑃𝑄 = √32 + 32 

   = √18 = 3√2 𝑢𝑛𝑖𝑡𝑠 ans.  

Q.5) Two lines passing through the point (2,3) intersects each other at an angle of 60°. If the 
slope of one line is 2. Find the equation of other line. 

Sol.5) Slope of one line: 𝑚1 = 2 
Let slope of required line: 𝑚2 = 𝑚 

Angle between them is 𝜃 = 60° 

We have, tan 𝜃 = |
𝑚1−𝑚2

1+𝑚1𝑚2
| 

⇒ tan 60° = |
2−𝑚

1+2𝑚
| 

⇒ √3 = |
2−𝑚

1+2𝑚
| 

⇒ ±√3 = |
2−𝑚

1+2𝑚
| ………. (if |𝑥| = 𝑦 then 𝑥 = ±𝑦 ) 

Case 1:  √3 = |
2−𝑚

1+2𝑚
|   Case 2: −√3 = |

2−𝑚

1+2𝑚
| 

⇒ √3 + 2√3𝑚 = 2 − 𝑚  −√3 − 2√3𝑚 = 2 − 𝑚 

⇒ 2√3𝑚 + 𝑚 = 2 − √3  −2 − √3 = 2√3𝑚 − 𝑚 

⇒ 𝑚(2√3 + 1) = 2 − √3  −2 − √3 = 𝑚(2√3 − 1) 

⇒ 𝑚 =
2−√3

2√3+1
    ⇒ 𝑚 =

−2−√3

2√3−1
 

Case 1: equation of required line (point slope form) 

𝑦 − 3 =
2−√3

2√3+1
(𝑥 − 2)    

⇒ (2√3 + 1)𝑦 − 6√3 − 3 = (2 − √3)𝑥 − 4 + 2√3 

⇒ (2 − √3)𝑥 − (2√3 + 1)𝑦 + 8√3 − 1 = 0 ans. 

Case 2: equation of required line (point slope form) 

𝑦 − 3 = (
−2−√3

2√3−1
) (𝑥 − 2)  

(2√3 − 1)𝑦 − 6√3 + 3 = (−2 − √3)𝑥 + 4 + 2√3   

⇒ (2 + √3)𝑥 + (2√3 − 1)𝑦 = 8√3 + 1 ans. 
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Q.6) Show that the equation of the line passing through the origin & making an angle 𝜃 with 

the line 𝑦 = 𝑚𝑥 + 𝑐 is 
𝑦

𝑥
=

𝑚±tan 𝜃

1∓𝑚 tan 𝜃
. 

Sol.6) Equation of given line 𝑦 = 𝑚𝑥 + 𝑐 
Slope of given line = 𝑚(𝑚1) 
Let slope of required line 𝑀(𝑚2) 
Angle between them = 𝜃 

We have, tan 𝜃 = |
𝑚1−𝑚2

1+𝑚1𝑚2
| 

⇒ tan 𝜃 = |
𝑚−𝑀

1+𝑚𝑀
|  

⇒ tan 𝜃 =
𝑚−𝑀

1+𝑚𝑀
  

Case 1: tan 𝜃 =
𝑚−𝑀

1+𝑚𝑀
     Case 2: − tan 𝜃 =

𝑚−𝑀

1+𝑚𝑀
 

⇒ tan 𝜃 + 𝑚𝑀 tan 𝜃 = 𝑚 − 𝑀   − tan 𝜃 − 𝑚𝑀 tan 𝜃 = 𝑚 − 𝑀 
⇒ 𝑀 + 𝑚𝑀 tan 𝜃 = 𝑚 − tan 𝜃   𝑀 − 𝑚𝑀 tan 𝜃 = 𝑚 + tan 𝜃 
⇒ 𝑀(1 + 𝑚 tan 𝜃) = 𝑚 − tan 𝜃  𝑀(1 − 𝑚 tan 𝜃) = 𝑚 + tan 𝜃 

⇒ 𝑀 =
𝑚−tan 𝜃

1+𝑚 tan 𝜃
    ⇒ 𝑀 =

𝑚±tan 𝜃

1−𝑚 tan 𝜃
 

⇒    𝑀 =
𝑚±tan 𝜃

1∓𝑚 tan 𝜃
 

Now, equation of required line: (point slope form, point (0,0), slope = 𝑀) 

𝑦 − 0 =
𝑚±tan 𝜃

1−𝑚 tan 𝜃
(𝑥 − 0)   

⇒
𝑦

𝑥
=

𝑚±tan 𝜃

1−𝑚 tan 𝜃
  Ans. 

Q.7) Point 𝑅(ℎ, 𝑘) divides a line segment between the axis in the ratio 1: 2. Find the equation 
of line. 

Sol.7) Let 𝐴(𝑥, 0) and 𝐵(0, 𝑦) 
𝑅 divides 𝐴𝐵 in ratio 1: 2 
By section formula, 

ℎ =
2𝑥+0

2+1
 And 𝑘 =

0+𝑦

2+1
  

⇒ 𝑥 =
3ℎ

2
 And 𝑦 = 3𝑘  

∴ 𝐴(
3ℎ

2
, 0) and 𝐵(0, 3𝑘)    

⇒ 𝑋 intercept: 𝑎 =
3ℎ

2
 And 𝑌 intercept: 𝑏 = 3𝑘  

By intercept form,  
𝑥

𝑎
+

𝑦

𝑏
= 1   

⇒
𝑥

3ℎ

2

=
𝑦

3𝑘
= 1    

⇒
2𝑥

3ℎ
+

𝑦

3𝑘
= 1  

⇒ 2𝑥 + 𝑦 = 3𝑘  ans. 

Q.8) Find the point on 𝑌 − 𝑎𝑥𝑖𝑠 whose distance from the line 
𝑥

3
+

𝑦

4
= 1 is 4 units. 

Sol.8) Equation of given line 
𝑥

3
+

𝑦

4
= 1 

⇒ 4𝑥 + 3𝑦 = 12  
⇒ 4𝑥 + 3𝑦 − 12 = 0  
Let point on the 𝑌 − 𝑎𝑥𝑖𝑠 is (0, 𝑦) distance = 4  (given) 

Distance between point and line is =
|𝑎𝑥1+𝑏𝑦1+𝑐|

√𝑎2+𝑏2
 

Here, distance = 4, point (0, 𝑦) & line: 4𝑥 + 3𝑦 − 12 = 0 
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⇒ 4 =
|0+3𝑦−12|

√16+9
 

⇒ 20 = |3𝑦 − 12| 

⇒ ±20 = 3𝑦 − 12 

⇒ 20 = 3𝑦 − 12 and −20 = 3𝑦 − 12 

⇒ 3𝑦 = 32 and 3𝑦 = −8 

⇒ 𝑦 =
32

3
 And 𝑦 =

−8

3
 

∴ the required points are (0,
32

3
) and (0,

−8

3
) ans. 

Q.9) If 𝑝 is the length of perpendicular from the origin to the line whose intercepts on the axis 

are 𝑎 & 𝑏. Show that 
1

𝑝2 =
1

𝑎2 +
1

𝑏2. 

Sol.9) Let equation of line is 
𝑥

𝑎
+

𝑦

𝑏
= 1 

⇒ 𝑏𝑥 + 𝑎𝑦 − 𝑎𝑏 = 0 

Point (0,0); distance= p and line: 𝑏𝑥 + 𝑎𝑦 − 𝑎𝑏 = 0 
By distance formula, 

𝑝 =
|0+0−𝑎𝑏|

√𝑏2+𝑎2
     

⇒ 𝑝 =
𝑎𝑏

√𝑏2+𝑎2
 

Squaring 

𝑝2 =
𝑎2𝑏2

𝑏2+𝑎2   

⇒ 
1

𝑝2 =
𝑏2+𝑎2

𝑎2𝑏2  

⇒ 
1

𝑝2 =
𝑏2

𝑎2𝑏2 +
𝑎2

𝑎2𝑏2 

⇒ 
1

𝑝2 =
1

𝑎2 +
1

𝑏2  (proved) 

Q.10) if 𝑝 and 𝑞 are the length of perpendicular from the origin to the lines 𝑥 sec 𝜃 − 𝑦 sin 𝜃 =
𝑘 cos(2𝜃) and 𝑥 sec 𝜃 + 𝑦 cosec 𝜃 = 𝑘 respectively. Prove that 𝑝2 + 4𝑞2 = 𝑘2. 

Sol.10) By distance formula,   

𝑝 =
|0−0−𝑘 cos(2𝜃)|

√cos2 𝜃+sin2 𝜃
   

⇒ 𝑝 =
𝑘 cos(2𝜃)

1
 

⇒ 𝑝 = 𝑘 cos(2𝜃) 

Now, 𝑞 =
|0+0−𝑘|

√sec2 𝜃+cosec2 𝜃
 

⇒ 𝑞 =
𝑘

1

cos2 𝜃
+

1

sin2 𝜃

 

⇒ 𝑞 =
𝑘

√sin2 𝜃+cos2 𝜃

sin2 𝜃.cos2 𝜃

 

⇒ 𝑞 =
𝑘
1

sin 𝜃.cos 𝜃
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⇒ 𝑞 =
𝑘
1

sin 𝜃.cos 𝜃

 

⇒ 𝑞 = 𝑘 sin 𝜃 cos 𝜃 
Taking L.H.S. 
𝑝2 + 4𝑞2  
= 𝑘2 cos2(2𝜃) + 4𝑘2 sin2 𝜃 . cos2 𝜃  
= 𝑘2[cos2(2𝜃) + 4 sin2 𝜃 . cos2 𝜃]   
= 𝑘2[cos2(2𝜃) + (2 sin 𝜃 cos 𝜃)2]   
= 𝑘2[cos2(2𝜃) + sin2(2𝜃)]  ……….. {∴ 2 sin 𝜃 cos 𝜃 = sin(2𝜃)} 
= 𝑘2(1)     ……….. {sin2 𝜃 + cos2 𝜃 = 1} 
= 𝑘2 (proved) 

 


