

	CBSE Class 11 Straight Lines Worksheet		
	Class 11 th		
Q.1)	Line through the points (-2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and $(x, 24)$. Find the value of x.		
Sol.1)	Let $m_1 \rightarrow$ slope of the line passes through the point (-2, 6) and (4, 8)		
	Then $m_1 = \frac{8-6}{4-(-2)} = \frac{2}{6}$ using $m = \frac{y_2 - y_1}{x_2 - x_1}$		
	$\Rightarrow m_1 = \frac{1}{3}$		
	Let $m_2 \rightarrow$ slope of the line passes through the point (8, 12) and (x, 24)		
	Then $m_2 = \frac{24 - 12}{x - 8} = \frac{12}{x - 8}$		
	Given that the two lines are perpendicular		
	$\therefore m_1 m_2 = -1$		
	$\Rightarrow \frac{1}{3} \times \frac{12}{x-8} = -1$		
	$\Rightarrow \frac{12}{3x - 24} = -1$		
	$\Rightarrow 12 = -3x + 24$		
	$\Rightarrow 3x = 12$		
	$\Rightarrow x = 4$ ans.		
Q.2)	Find the value of x for which the points $(x, -1)$, $(2, 1)$ and $(4, 5)$ are collinear.		
Sol.2)	Let points are $A(x, -1), B(2, 1)$ and $C(4, 5)$		
	Since points are collinear		
	\therefore slope of $AB = slope \ of \ BC$		
	$\Rightarrow \frac{1 - (-1)}{2 - x} = \frac{5 - 1}{4 - 2} \qquad \qquad \text{using } m = \frac{y_2 - y_1}{x_2 - x_1}$		
	$\Rightarrow \frac{2}{2-x} = \frac{4}{2}$		
	$\Rightarrow 4 = 8 - 4x$		
	$\Rightarrow 4x = 4$		
	$\Rightarrow x = 1$ ans.		

Q.3)	Without using Pythagoras theorem, vertices of a right angled triangle.	show that $A(4, 4), B(3, 5)$ and $C(-1, -1)$ are the		
Sol.3)	I.3) We have $A(4,4), B(3,5)$ and $C(-1,-1)$			
	Slope of side $AB(m_1) = \frac{5-4}{3-4} = \frac{1}{-1} =$	= -1		
	Slope of side $BC(m_2) = \frac{-1-5}{-1-3} = \frac{-6}{-4}$	$=\frac{3}{2}$		
	Slope of side $AC = \frac{-1-4}{-1-4} = \frac{-5}{-5} = 1$			
	Clearly, $m_1 \times m_2 = (-1)(1) = -1$			
	$\Rightarrow AB \perp AC$			
	$\therefore A, B, C$ is a right angle triangle at A	$4 = 90^{\circ}$ Ans.		
Q.4)		lope of another line. If tangent of the angle between		
	them is $\frac{1}{3}$. Find the slopes of the lines	5.		
Sol.4)	Given, $\tan \theta = \frac{1}{3}$	00		
	Let the slope of 1^{st} line = m			
	Then slope of 2^{nd} line = $2m$ (given)			
	Now, angle between two lines is $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2}\right $ Here $m_1 = m$ and $m_2 = 2m$ and $\tan \theta = \frac{1}{3}$			
	$\Rightarrow \frac{1}{3} = \left \frac{m - 2m}{1 + 2m^2} \right $			
$\Rightarrow \frac{1}{3} = \left \frac{-m}{1+2m^2} \right = \left \frac{m}{1+2m^2} \right $				
	$\Rightarrow \pm \frac{1}{3} = \frac{m}{1+2m^2} \dots \{if x = y t\}$	$hen \ x = \pm y \}$		
	$\Rightarrow 1 + 2m^2 = 3m$	$-1 - 2m^2 = 3m$		
	$\Rightarrow 2m^2 - 3m + 1 = 0$	$2m^2 + 3m + 1 = 0$		
	$\Rightarrow 2m^2 - 2m - m + 1 = 0$	$2m^2 + 2m + m + 1 = 0$		
	$\Rightarrow 2m(m-1) - 1(m-1) = 0$	2m(m+1) + 1(m+1) = 0		
	$\Rightarrow (m-1)(2m-1) = 0$	(2m+1)(m+1) = 0		

	$\Rightarrow m = 1 \text{ and } m = \frac{1}{2}$ $m = -\frac{1}{2} \text{And } m = -1$		
	\cdot close of 1 st line are $1^{\frac{1}{2}} - \frac{1}{2}$ and -1		
	∴ slope of 1 st line are $1, \frac{1}{2}, -\frac{1}{2}$ And -1 ∴ slope of 2 nd line are 2, 1, -1 and -2 ans.		
Q.5)	A ray of light passing through the point (1, 2) reflects on the $X - axis$ at point A and the		
	reflected ray passes through the point (5, 3). Find the coordinates of A .		
Sol.5)	Let the coordinates of point A is $(x, 0)$		
	Slope of $AC = \frac{3-0}{5-x} = \frac{3}{5-x}$ using $m = \frac{y_2 - y_1}{x_2 - x_1}$		
	Also slope of $AC = \operatorname{Tan} \theta$ $m = \tan \theta$		
	$\Rightarrow \tan \theta = \frac{3}{5-x} \qquad \dots \dots \dots (i)$		
	Now the slope of $AB = \frac{2-0}{1-x} = \frac{2}{1-x}$ Also slope of $AB = \tan(180 - \theta) = -\operatorname{Tan} \theta$ $\Rightarrow -\tan \theta = \frac{2}{1-x}$		
	$\Rightarrow \tan \theta = \frac{-2}{1-x} \qquad \dots \dots \dots (ii) \qquad $		
	From equation (i) & (ii) $\Rightarrow \frac{3}{5-x} = \frac{-2}{1-x}$		
	$\Rightarrow 3 - 3x = -10 + 2x$		
	$\Rightarrow 13 = 5x$ $\Rightarrow x = \frac{13}{5}$		
	$\Rightarrow x = \frac{13}{5}$		
	\therefore the required point is $A\left(\frac{13}{5}, 0\right)$ Ans.		
Q.6)	Find the equation of a line passing through the point (2, 2) and cutting of intercepts on the axis whose sum is 9.		
Sol.6)	Let the equation of line is $\frac{x}{a} + \frac{y}{b} = 1$		
	We have $a + b = 9 \Rightarrow b = 9 - a$		
	$\Rightarrow \frac{x}{a} + \frac{y}{9-a} = 1$		
	This line passes through the point		
	\therefore (2,2) will satisfy the equation of line		

	$\Rightarrow \frac{2}{a} + \frac{2}{9-a} = 1$
	$\Rightarrow \frac{18 - 2a + 2a}{a(9 - a)} = 1$
	$\Rightarrow 18 = 9a - a^2$
	$\Rightarrow a^2 - 9a + 18 =$
	$\Rightarrow (a-6)(a-3) = 0$
	$\Rightarrow a = 6 \text{ and } a = 3$
	When $a = 6$ then $b = 3$ And $a = 3$ then $b = 6$
	\therefore equations of line are
	$\frac{x}{6} + \frac{y}{3} = 1$ $\frac{x}{3} + \frac{y}{6} = 1$
	$\Rightarrow x + 2y = 6$ ans. $\Rightarrow 2x + y = 6$ ans.
Q.7)	Find the equation of the line passing through the point of intersection of the lines $4x + 4x $
Q.7)	
	7y = 3 and $2x - 3y = 1$ that has equal intercepts with axes.
Sol.7)	Given equations of line:-
	4x + 7y = 3(i)
	2x - 3y = -1(ii)
	Solving (i) & (ii), we get
	$x = \frac{1}{13}$ And $y = \frac{5}{13}$
	\therefore the intersection point is $\left(\frac{1}{13}, \frac{5}{13}\right)$
	Let the equation of required line is $\frac{x}{a} + \frac{y}{a} = 1$
	(1,5)
	Now this line passes through the point $\left(\frac{1}{13}, \frac{5}{13}\right)$
	$\Rightarrow \frac{\frac{1}{13}}{a} + \frac{\frac{5}{13}}{a} = 1$
	$\Rightarrow \frac{1}{11a} + \frac{5}{13a} = 1$
	$\Rightarrow 6 = 13a$
	$\Rightarrow a = \frac{6}{13}$
	\therefore equation of line becomes

-		
	$\frac{\frac{x}{6}}{13} + \frac{\frac{y}{6}}{13} = 1$	
	$\Rightarrow \frac{13x}{6} + \frac{13y}{6} = 1$	
	$\Rightarrow 13x + 13y = 6$ ans.	
Q.8)	A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divide it in the ratio $1: n$. Find the equation of the line	
Sol.8)	Slope of $AB = \frac{3-0}{2-1} = 3$ $m = \frac{y_2 - y_1}{x_2 - x_1}$	
	Since $CD \perp AB$	
	$\therefore \text{ Slope of } CD = -\frac{1}{3} \qquad \qquad \dots \dots -ve \ respectively$	
	Now, point <i>D</i> divide <i>AB</i> in the ratio 1: <i>n</i>	
	By section formula,	
	Coordinate of D is $= \left(\frac{2+n}{1+n}, \frac{3}{1+n}\right)$	
	Equation of required line <i>CD</i> (using point slope form)	
	$y - \frac{3}{1+n} = -\frac{1}{3} \left(x - \frac{2+n}{1+n} \right)$	
	$\frac{(1+n)y-3}{1+n} = -\frac{1}{3} \left[\frac{x(1+n)-2-n}{1+n} \right]$	
	$\Rightarrow 3(1+n)y - 9 = -(1+n)x + 2 + n$ $\Rightarrow x(1+n) + y(3n+3) = 11 + n \text{ans.}$	
Q.9)	Find the coordinates of the foot of perpendicular from the point (-1, 3) to the line $3x - 4y - 16 = 0$.	
Sol.9)	Given equation of $AB: 3x - 4y = 16$ (i)	
	Slope of $AB = \frac{-3}{-4} = \frac{3}{4}$ $\left\{m = \frac{-\text{ coefficient of } x}{\text{ coefficient of } y}\right\}$	
	Since $CD \perp AB$	
	$\therefore \text{ Slope of } CD = -\frac{4}{3} \qquad \qquad \dots \dots -ve \ respectively$	
	Equation of line <i>CD</i> (use point slope form), (point (-1, 3) & $m=-rac{4}{3}$)	
	$y - 3 = -\frac{4}{3}(x + 1)$	
repro	wyright © www.studiestoday.com All rights reserved. Nnay beduced, distributed, or transmitted in any form or by aopying,rding, or other electronic or mechanical methods, with A D B	

	$\Rightarrow 3y - 9 = -4x - 4$
	$\Rightarrow 4x + 3y = 5 \qquad \qquad$
	Solving (i) & (ii)
	We get $x = \frac{68}{25}$ And $y = -\frac{49}{25}$
	: foot of perpendicular id $D\left(\frac{68}{25}, -\frac{49}{25}\right)$ { <i>CD and AB intersects at point D</i> }
Q.10)	The vertices of a triangle are $A(10, 4)$, $B(-4, 9)$ and $C(-2, -1)$. Find the equations of its
	altitudes. Also find its ORTHOCENTRE.
Sol.10)	Orthocenter is the point of intersects of altitudes of a triangle.
	Altitude <i>AD</i> :
	$S_{1} = 10^{-1} - 10^{-9} - 10^{-9}$
	Slope of $BC = \frac{-1-9}{-2+4} = -5$
	Since $AD \perp CB$
	$\therefore \text{ Slope of } AD = \frac{1}{5} \qquad \qquad$
	Now equation of AD (using point slope from point A(10, 4), slope $=\frac{1}{5}$)
	$y - 4 = \frac{1}{5}(x - 10)$
	$\Rightarrow 5y - 20 = x - 10$
	$\Rightarrow x - 5y = -10$ (i) Altitude <i>BE</i> :
	Slope of $AC = \frac{-1-4}{-2-10} = \frac{5}{12}$
	Since $BF \perp AC$
	: Slope of $BE = -\frac{12}{5}$
	Now equation of <i>BE</i> (using point slope from point B(-4,9), slope $=\frac{-12}{5}$)
	$y - 9 = -\frac{12}{5}(x + 4)$
	$\Rightarrow 5y - 45 = -12x - 48$
	$\Rightarrow 12x + 5y = -3 \qquad \dots $
	Similarly equation of <i>CF</i> is $14x - 5y = -23$ (iii)
	∴ equation of altitudes are
	AD = x - 5y = -10
	BF = 12x + 5y = -3
	CF = 14x - 5y = -23

To find ORTHOCENTRE, solve any two equations of altitudes.

By solving (i) & (ii) we get

 $x = -1 \text{ and } y = \frac{9}{5}$

 \therefore orthocenter is $(-1, \frac{9}{5})$ ans.

www.studiestoday.com