	CBSE Class 11 Straight Lines Worksheet Class $11^{\text {th }}$
Q.1)	Line through the points $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(8,12)$ and $(x, 24)$. Find the value of x.
Sol.1)	Let $m_{1} \rightarrow$ slope of the line passes through the point $(-2,6)$ and $(4,8)$ Then $m_{1}=\frac{8-6}{4-(-2)}=\frac{2}{6}$ \qquad using $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ $\Rightarrow m_{1}=\frac{1}{3}$ Let $m_{2} \rightarrow$ slope of the line passes through the point $(8,12)$ and $(x, 24)$ Then $m_{2}=\frac{24-12}{x-8}=\frac{12}{x-8}$ Given that the two lines are perpendicular $\begin{aligned} & \therefore m_{1} m_{2}=-1 \\ & \Rightarrow \frac{1}{3} \times \frac{12}{x-8}=-1 \\ & \Rightarrow \frac{12}{3 x-24}=-1 \\ & \Rightarrow 12=-3 x+24 \\ & \Rightarrow 3 x=12 \\ & \Rightarrow x=4 \quad \text { ans. } \end{aligned}$
Q.2)	Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.
Sol.2)	Let points are $A(x,-1), B(2,1)$ and $C(4,5)$ Since points are collinear \therefore slope of $A B=$ slope of $B C$ $\Rightarrow \frac{1-(-1)}{2-x}=\frac{5-1}{4-2}$ \qquad using $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ $\begin{aligned} & \Rightarrow \frac{2}{2-x}=\frac{4}{2} \\ & \Rightarrow 4=8-4 x \\ & \Rightarrow 4 x=4 \end{aligned}$ $\Rightarrow x=1 \quad \text { ans. }$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Q.3)	Without using Pythagoras theorem, show that $A(4,4), B(3,5)$ and $C(-1,-1)$ are the vertices of a right angled triangle.
Sol.3)	We have $A(4,4), B(3,5)$ and $C(-1,-1)$ Slope of side $A B\left(m_{1}\right)=\frac{5-4}{3-4}=\frac{1}{-1}=-1$ Slope of side $B C\left(m_{2}\right)=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2}$ Slope of side $A C=\frac{-1-4}{-1-4}=\frac{-5}{-5}=1$ Clearly, $m_{1} \times m_{2}=(-1)(1)=-1$ $\Rightarrow A B \perp \mathrm{AC}$ $\therefore A, B, C$ is a right angle triangle at $A=90^{\circ} \quad$ Ans.
Q.4)	The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$.Find the slopes of the lines.
Sol.4)	Given, $\tan \theta=\frac{1}{3}$ Let the slope of $1^{\text {st }}$ line $=m$ Then slope of $2^{\text {nd }}$ line $=2 m$ (given) Now, angle between two lines is $\tan \theta=\left\|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right\|$ Here $m_{1}=m$ and $m_{2}=2 m$ and $\tan \theta=\frac{1}{3}$ $\begin{aligned} & \Rightarrow \frac{1}{3}=\left\|\frac{m-2 m}{1+2 m^{2}}\right\| \\ & \Rightarrow \frac{1}{3}=\left\|\frac{-m}{1+2 m^{2}}\right\|=\left\|\frac{m}{1+2 m^{2}}\right\| \\ & \Rightarrow \pm \frac{1}{3}=\frac{m}{1+2 m^{2}} \ldots \ldots \ldots . .\{\text { if }\|x\|=y \text { then } x= \pm y\} \\ & \Rightarrow 1+2 m^{2}=3 m \\ & \Rightarrow 2 m^{2}-3 m+1=0 \\ & \Rightarrow 2 m^{2}-2 m-m+1=0 \\ & \Rightarrow 2 m(m-1)-1(m-1)=0 \end{aligned} \begin{array}{ll} 2 m^{2}+3 m+1=0 \\ \Rightarrow(m-1)(2 m-1)=0 & 2 m(m+1)+1(m+1)=0 \\ 2 m+2 m+m+1=0 \\ \hline 2 m+1)(m+1)=0 \end{array}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow m=1$ and $m=\frac{1}{2} \quad m=-\frac{1}{2}$ And $m=-1$ \therefore slope of $1^{\text {st }}$ line are $1, \frac{1}{2},-\frac{1}{2}$ And -1 \therefore slope of $2^{\text {nd }}$ line are $2,1,-1$ and -2 ans.
Q.5)	A ray of light passing through the point $(1,2)$ reflects on the $X-$ axis at point A and the reflected ray passes through the point $(5,3)$. Find the coordinates of A.
Sol.5)	Let the coordinates of point A is $(x, 0)$ Slope of $A C=\frac{3-0}{5-x}=\frac{3}{5-x}$ \qquad using $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Also slope of $A C=\operatorname{Tan} \theta$ \qquad $m=\tan \theta$ $\begin{equation*} \Rightarrow \tan \theta=\frac{3}{5-x} \tag{i} \end{equation*}$ Now the slope of $A B=\frac{2-0}{1-x}=\frac{2}{1-x}$ Also slope of $A B=\tan (180-\theta)=-\operatorname{Tan} \theta$ $\begin{align*} & \Rightarrow-\tan \theta=\frac{2}{1-x} \\ & \Rightarrow \tan \theta=\frac{-2}{1-x} \tag{ii} \end{align*}$ From equation (i) \& (ii) $\begin{aligned} & \Rightarrow \frac{3}{5-x}=\frac{-2}{1-x} \\ & \Rightarrow 3-3 x=-10+2 x \\ & \Rightarrow 13=5 x \\ & \Rightarrow x=\frac{13}{5} \end{aligned}$ \therefore the required point is $A\left(\frac{13}{5}, 0\right)$ Ans.
Q.6)	Find the equation of a line passing through the point $(2,2)$ and cutting of intercepts on the axis whose sum is 9 .
Sol.6)	Let the equation of line is $\frac{x}{a}+\frac{y}{b}=1$ We have $a+b=9 \Rightarrow b=9-a$ $\Rightarrow \frac{x}{a}+\frac{y}{9-a}=1$ This line passes through the point $\therefore(2,2)$ will satisfy the equation of line

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\begin{aligned} & \Rightarrow \frac{2}{a}+\frac{2}{9-a}=1 \\ & \Rightarrow \frac{18-2 a+2 a}{a(9-a)}=1 \\ & \Rightarrow 18=9 a-a^{2} \\ & \Rightarrow a^{2}-9 a+18= \\ & \Rightarrow(a-6)(a-3)=0 \\ & \Rightarrow a=6 \text { and } a=3 \end{aligned}$ When $a=6$ then $b=3$ And $a=3$ then $b=6$ \therefore equations of line are $\begin{array}{ll} \frac{x}{6}+\frac{y}{3}=1 & \frac{x}{3}+\frac{y}{6}=1 \\ \Rightarrow x+2 y=6 \text { ans. } & \Rightarrow 2 x+y=6 \text { ans. } \\ \hline \end{array}$
Q.7)	Find the equation of the line passing through the point of intersection of the lines $4 x+$ $7 y=3$ and $2 x-3 y=1$ that has equal intercepts with axes.
Sol.7)	Given equations of line:- $\begin{align*} & 4 x+7 y=3 \tag{i}\\ & 2 x-3 y=-1 \tag{ii} \end{align*}$ Solving (i) \& (ii), we get $x=\frac{1}{13} \text { And } y=\frac{5}{13}$ \therefore the intersection point is $\left(\frac{1}{13}, \frac{5}{13}\right)$ Let the equation of required line is $\frac{x}{a}+\frac{y}{a}=1$ Now this line passes through the point $\left(\frac{1}{13}, \frac{5}{13}\right)$ $\begin{aligned} & \Rightarrow \frac{\frac{1}{13}}{a}+\frac{\frac{5}{13}}{a}=1 \\ & \Rightarrow \frac{1}{11 a}+\frac{5}{13 a}=1 \\ & \Rightarrow 6=13 a \\ & \Rightarrow a=\frac{6}{13} \end{aligned}$ \therefore equation of line becomes

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\begin{aligned} & \frac{\frac{x}{6}}{13}+\frac{\frac{y}{6}}{13}=1 \\ & \Rightarrow \frac{13 x}{6}+\frac{13 y}{6}=1 \\ & \Rightarrow 13 x+13 y=6 \end{aligned}$
Q.8)	A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divide it in the ratio 1: n. Find the equation of the line
Sol.8)	Slope of $A B=\frac{3-0}{2-1}=3$ \qquad $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ Since $C D \perp \mathrm{AB}$ \therefore Slope of $C D=-\frac{1}{3}$ \qquad -ve respectively Now, point D divide $A B$ in the ratio 1: n By section formula, Coordinate of D is $=\left(\frac{2+n}{1+n}, \frac{3}{1+n}\right)$ Equation of required line $C D$ (using point slope form) $\begin{aligned} & y-\frac{3}{1+n}=-\frac{1}{3}\left(x-\frac{2+n}{1+n}\right) \\ & \frac{(1+n) y-3}{1+n}=-\frac{1}{3}\left[\frac{x(1+n)-2-n}{1+n}\right] \\ & \Rightarrow 3(1+n) y-9=-(1+n) x+2+n \\ & \Rightarrow x(1+n)+y(3 n+3)=11+n \quad \text { ans. } \end{aligned}$
Q.9)	Find the coordinates of the foot of perpendicular from the point $(-1,3)$ to the line $3 x-$ $4 y-16=0$.
Sol.9)	Given equation of $A B: 3 x-4 y=16$ \qquad Slope of $A B=\frac{-3}{-4}=\frac{3}{4} \quad$............ $\left\{m=\frac{- \text { coefficient of } x}{\text { coefficient of } y}\right\}$ Since $C D \perp \mathrm{AB}$ \therefore Slope of $C D=-\frac{4}{3}$ \qquad -ve respectively Equation of line $C D$ (use point slope form), (point $(-1,3) \& m=-\frac{4}{3}$) $y-3=-\frac{4}{3}(x+1)$
	right © www.studiestoday.com All rights reserved. \uparrow duced, distributed, or transmitted in any form or by a ding, or other electronic or mechanical methods, wit$\left.\stackrel{A}{A}\right\|_{B}$lay be opying, opsi-4y+6=0

	$\begin{align*} & \Rightarrow 3 y-9=-4 x-4 \\ & \Rightarrow 4 x+3 y=5 \tag{ii} \end{align*}$ Solving (i) \& (ii) We get $x=\frac{68}{25}$ And $y=-\frac{49}{25}$ \therefore foot of perpendicular id $D\left(\frac{68}{25},-\frac{49}{25}\right)$ \qquad $\{C D$ and $A B$ intersects at point $D\}$
Q.10)	The vertices of a triangle are $A(10,4), B(-4,9)$ and $C(-2,-1)$. Find the equations of its altitudes. Also find its ORTHOCENTRE.
Sol.10)	Orthocenter is the point of intersects of altitudes of a triangle. Altitude $A D$: Slope of $B C=\frac{-1-9}{-2+4}=-5$ Since $A D \perp C B$ \therefore Slope of $A D=\frac{1}{5}$ \qquad Now equation of $A D$ (using point slope from point $A(10,4)$, slope $=\frac{1}{5}$) $\begin{align*} & y-4=\frac{1}{5}(x-10) \\ & \Rightarrow 5 y-20=x-10 \\ & \Rightarrow x-5 y=-10 \tag{i} \end{align*}$ Altitude $B E$: Slope of $A C=\frac{-1-4}{-2-10}=\frac{5}{12}$ Since $B F \perp A C$ \therefore Slope of $B E=-\frac{12}{5}$ Now equation of $B E$ $\begin{align*} & y-9=-\frac{12}{5}(x+4) \\ & \Rightarrow 5 y-45=-12 x-48 \\ & \Rightarrow 12 x+5 y=-3 \tag{ii} \end{align*}$ Similarly equation of $C F$ is $14 x-5 y=-23$ \therefore equation of altitudes are $\begin{aligned} & A D=x-5 y=-10 \\ & B F=12 x+5 y=-3 \\ & C F=14 x-5 y=-23 \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	To find ORTHOCENTRE, solve any two equations of altitudes.
By solving (i) \& (ii) we get	
$x=-1$ and $y=\frac{9}{5}$	
\therefore orthocenter is $\left(-1, \frac{9}{5}\right)$ ans.	

