CHAPTER - 1

SETS

KEY POINTS

- A set is a well-defined collection of objects.
- There are two methods of representing a set :-
 - (a) Roster or Tabular form.
 - (b) Set-builder form or Rule method.
- Types of sets :-
 - (i) Empty set or Null set or void set
 - (ii) Finite set
 - (iii) Infinite set
 - (iv) Singleton set
- Subset :- A set A is said to be a subset of set B if a \in A \Rightarrow a \in B, \forall a \in A
- Equal sets :- Two sets A and B are equal if they have exactly the same elements i.e A = B if A \subset B and B \subset A
- Power set : The collection of all subsets of a set A is called power set of A, denoted by P(A) i.e. $P(A) = \{ B : B \subset A \}$
- If A is a set with n(A) = m then $n[P(A)] = 2^m$.

Types of Intervals

Open Interval (a, b) = $\{x \in R : a < x < b\}$

Closed Interval [a, b] = $\{ x \in R : a \le x \le b \}$

Semi open or Semi closed Interval,

$$(a,b] = \{ x \in R : a < x \le b \}$$

$$[a,b) = \{ x \in R : a \le x < b \}$$

Union of two sets A and B is,

$$A \cup B = \{ x : x \in A \text{ or } x \in B \}$$

• Intersection of two sets A and B is,

$$A \cap B = \{ x : x \in A \text{ and } x \in B \}$$

• Disjoint sets: Two sets A and B are said to be disjoint if $A \cap B = \phi$

Difference of sets A and B is,

$$A - B = \{ x : x \in A \text{ and } x \notin B \}$$

• Difference of sets B and A is,

$$B - A = \{ x : x \in B \text{ and } x \notin A \}$$

• Complement of a set A, denoted by A' or Ac is

$$A' = A^c = U - A = \{ x : x \in U \text{ and } x \notin A \}$$

- Properties of complement sets :
 - 1. Complement laws

(i)
$$A \cup A' = U$$
 (ii) $A \cap A' = \phi$ (iii) $(A')' = A$

2. De Morgan's Laws

(i)
$$(A \cup B)' = A' \cap B'$$
 (ii) $(A \cap B)' = A' \cup B'$

Note: This law can be extended to any number of sets.

- 3. $\phi' = \bigcup$ and $\bigcup' = \phi$
- $A B = A \cap B'$
 - Commutative Laws :-
 - (i) $A \cup B = B \cup A$ (ii) $A \cap B = B \cap A$
- Associative Laws :-
 - $(A \cup B) \cup C = A \cup (B \cup C)$ (ii) $(A \cap B) \cap C = A \cap (B \cap C)$
- Distributive Laws :-
 - (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- If $A \subset B$, then $A \cap B = A$ and $A \cup B = B$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

Which of the following are sets? Justify your answer.

- The collection of all the months of a year beginning with letter M
- The collection of difficult topics in Mathematics.

Let A = $\{1,3,5,7,9\}$. Insert the appropriate symbol \in or \notin in blank spaces :- (Question- 3,4)

- 3. 2 A
- 4. 5 A
- Write the set A = $\{x : x \text{ is an integer}, -1 \le x < 4\}$ in roster form
- List all the elements of the set,

$$A = \left\{ x : x \in Z, -\frac{1}{2} < x < \frac{11}{2} \right\}$$

Write the set $B = \{3,9,27,81\}$ in set-builder form. 7.

Which of the following are empty sets? Justify. (Question- 8,9)

- $A = \{ x : x \in N \text{ and } 3 < x < 4 \}$
- $B = \{ x : x \in N \text{ and } x^2 = x \}$

Which of the following sets are finite or Infinite? Justify. (Question-10,11)

- 10. The set of all the points on the circumference of a circle.
- 11. $B = \{ x : x \in N \text{ and } x \text{ is an even prime number} \}$
- Are sets A = $\{-2,2\}$, B = $\{x : x \in Z, x^2-4 = 0\}$ equal? Why? 12.
- 13. Write (-5,9] in set-builder form
- Write $\{x: -3 \le x < 7\}$ as interval.
- 15. If $A = \{1,3,5\}$, how many elements has P(A)?
- 16. Write all the possible subsets of $A = \{5,6\}$.

If $A = \{2,3,4,5\}$, $B = \{3,5,6,7\}$ find (Question- 17,18)

17. $A \cup B$

14.

- 18. $A \cap B$
- If $A = \{1,2,3,6\}$, $B = \{1, 2, 4, 8\}$ find B A
- If $A = \{p, q\}, B = \{p, q, r\}, \text{ is B a superset of A? Why?}$ 20.
- 21. Are sets A = $\{1,2,3,4\}$, B = $\{x : x \in N \text{ and } 5 \le x \le 7\}$ disjoint? Why?
- 22. If X and Y are two sets such that n(X) = 19, n(Y) = 37 and $n(X \cap Y) = 12$, find $n(X \cup Y)$.

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

- If $\bigcup = \{1,2,3,4,5,6,7,8,9\}$, $A = \{2,3,5,7,9\}$, $B = \{1,2,4,6\}$, verify 23.
 - $(A \cup B)' = A' \cap B'$ (i)
 - $B A = B \cap A' = B (A \cap B)$

24. Let A, B be any two sets. Using properties of sets prove that,

(i)
$$(A - B) \cup B = A \cup B$$

(ii)
$$(A \cup B) - A = B - A$$

[**Hint** : $A - B = A \cap B'$ and use distributive law.]

- 25. In a group of 800 people, 500 can speak Hindi and 320 can speak English. Find
 - (i) How many can speak both Hindi and English?
 - (ii) How many can speak Hindi only?
- 26. A survey shows that 84% of the Indians like grapes, whereas 45% like pineapple. What percentage of Indians like both grapes and pineapple?
- 27. In a survey of 450 people, it was found that 110 play cricket, 160 play tennis and 70 play both cricket as well as tennis. How many play neither cricket nor tennis?
- 28. In a group of students, 225 students know French, 100 know Spanish and 45 know both. Each student knows either French or Spanish. How many students are there in the group?
- 29. If A = [-3, 5), B = (0, 6] then find (i) A B, (ii) $A \cup B$

LONG ANSWER TYPE QUESTIONS (6 MARKS)

- 30. In a survey it is found that 21 people like product A, 26 people like product B and 29 like product C. If 14 people like product A and B, 15 people like product B and C, 12 people like product C and A, and 8 people like all the three products. Find
 - (i) How many people are surveyed in all?
 - (ii) How many like product C only?
- 31. A college awarded 38 medals in football, 15 in basket ball and 20 in cricket. If these medals went to a total of 50 men and only five men got medals in all the three sports, how many received medals in exactly two

ANSWERS

Set 1.

3. ∉

5. $A = \{-1, 0, 1, 2, 3\}$

Not a set

4.

6. $A = \{ 0,1,2,3,4,5 \}$

 $B = \{ x : x = 3^n, n \in N \text{ and } 1 \le n \le 4 \}$

8. Empty set 9. Non-empty set

Infinite set 10.

11. Finite set

12. Yes

13. $\{ x : x \in R, -5 < x \le 9 \}$

14. [-3,7) 15. $2^3 = 8$

16. ϕ , { 5}, {6}, {5,6} 17. $A \cup B = \{2,3,4,5,6,7\}$

18. $A \cap B = \{3, 5\}$

19. $B - A = \{4,8\}$

Yes, because A is a subset of B 20.

Yes, because $A \cap B = \emptyset$ 22. $n(X \cup Y) = 44$ 21.

25. 20 people can speak both Hindi and English

(ii) 480 people can speak Hindi only

26. 29% of the Indians like both grapes and pineapple.

27. **Hint:** U – set of people surveyed

A – set of people who play cricket

B – set of people who play tennis

Number of people who play neither cricket nor tennis

$$= n[(A \cup B)'] = n(U) - n(A \cup B)$$

$$= 450 - 200$$

= 250

There are 280 students in the group. 28.

- 29. (i) [-3, 0]; (ii) [-3, 6]
- 30. **Hint**: Let A, B, C denote respectively the set of people who like product A, B, C.

a, b, c, d, e, f, g - Number of elements in bounded region

- (i) Total number of Surveyed people = a + b + c + d + e + f + g = 43
- (ii) Number of people who like product C only = g = 10
- 31. 13 people got medals in exactly two of the three sports.

Hint:

$$f = 5$$

$$a + b + f + e = 38$$

$$b + c + d + f = 15$$

$$e + d + f + g = 20$$

$$a + b + c + d + e + f + g = 50$$

we have to find b + d + e