

	SETS	Т
	Class XI	
Q.1)	Is it true for any sets A and B; $P(A) \cup P(B) = P(A \cup B)$. Justify your answer.	+
Sol.1)	To check: $P(A) \cup P(B) = P(A \cup B)$	+
301.17	Let $A = \{1,2\}$ and	
	$B = \{2,3\}$	
	$P(A) = \{\langle 1 \rangle, \langle 2 \rangle, \langle 1, 2 \rangle, \not\subset \}; P(B) = \{\langle 2 \rangle, \langle 3 \rangle, \langle 2, 3 \rangle, \emptyset\}$	
	$A \cup B = \{1,2,3\}$	
	$P(A \cup B) = \{\langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 1, 2, 3 \rangle, \emptyset \}$	
	$P(A) \cup P(B) = \{\langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \neq \}$	
	Clearly, $P(A) \cup P(B) \neq P(A \cup B)$ ans.	
Q.2)	State and prove $DE - MORGAN'S LAW$.	T
Sol.2)	De-Morgan's Law	T
,	$(i)(A \cup B)^1 = A^1 \cap B^1$	
	Let $x \in (A \cup B)^1$	
	$\Rightarrow x \notin A \text{ and } x \notin B$	
	$\Rightarrow x \in A^1 \text{ and } x \in B^1$	
	$\Rightarrow x \notin (A \cup B)$ $\Rightarrow x \notin A \text{ and } x \notin B$ $\Rightarrow x \in A^1 \text{ and } x \in B^1$ $\Rightarrow x \in A^1 \cup B^1$ $\therefore (A \cup B)^1 \in A^1 \cap B^1 \qquad (1)$	
	$\therefore (A \cup B)^1 \subset A^1 \cap B^1 \dots (1)$	
	Now let $y \in A^1 \cap B^1$	
	$\Rightarrow y \notin (A \cup B)$	
	$\Rightarrow y \in A^1 \text{ and } y \in B^1$	
	$\Rightarrow y \notin A \text{ and } y \notin B$	
	$\Rightarrow y \notin (A \cup B)$	
	$\Rightarrow y \in (A \cup B)^1$	
	$\therefore A^1 \cap B^1 \subset (A \cup B)^1 \dots \dots (2)$	
	From (1) and (2), $(A \cup B)^1 = A^1 \cap B^1$ (proved)	
	$(ii) (A \cap B)^1 = A^1 \cup B^1$	
	Let $x \in (A \cap B)^1$	
	$\Rightarrow x \notin (A \cap B)$	
	$\Rightarrow x \notin A \text{ or } x \notin B$	
	$\Rightarrow x \in A^1 \text{ or } x \in B^1$	
	$\Rightarrow x \in (A^1 \cup B^1)$	
	$\therefore (A \cap B)^1 \subset A^1 \cup B^1 \dots (1)$	
	Now let $y \in A^1 \cup B^1$	
	$\Rightarrow y \in A^1 \text{ or } x \in B^1$	
	$\Rightarrow y \notin A \text{ and } y \notin B$	
	$\Rightarrow y \notin A \cap B$	
	$\Rightarrow y \in (A \cap B)^1$	
	$\therefore A^1 \cup B^1 \subset (A \cap B)^1 \dots (2) \text{ (proved)}$	
·	From (1) and (2), $(A \cap B)^1 = A^1 \cup B^1$ (proved)	1
Q.3)	State and prove DISTRIBUTIVE LAW.	1
Sol.3)	$(i)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
	Let $x \in A \cup (B \cap C)$	
	$\Rightarrow x \in A \text{ and } x \in (B \cap C)$	
	$\Rightarrow x \in A \text{ or } (x \in B \text{ and } x \in C)$	
	$\Rightarrow (x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)$	

Copyright © www.studiestoday.com

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.


```
\Rightarrow x \in (A \cup B) \text{ and } x \in (A \cup C)
            \Rightarrow x \in [(A \cup B) \cap (A \cup C)]
            A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C) \dots (1)
            Now let y \in (A \cup B) \cap (A \cup C)
            \Rightarrow y \in (A \cup B) \ and \ (A \cup C)
            \Rightarrow (y \in A \text{ or } y \in B) \text{ and } (y \in A \text{ or } y \in C)
            \Rightarrow y \in A \text{ or } y \in (B \cap C)
            \Rightarrow y \in A \cup (B \cap C)
           \therefore (A \cup B) \cap (A \cup C) \subset A \cup (B \cap C) \dots (2)
           From (1) and (2), A \cup (B \cap C) = (A \cup B) \cap (A \cup C) (proved)
            (ii) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
SELF
           Two finite sets have m and n elements. The number of elements in the power set of first set is 48 more
Q.4)
           than the number of elements in power set of the second set. find the values of m and n.
Sol.4)
           Let two sets are A and B
           Given n(A) = n and n(B) = m
           No. of subsets of Set A = 2^n
            (OR) No. of elements in P(A)
           No. of subsets of Set B = 2^m
            (OR) No. of elements in P(B)
           Given that, 2^n - 2^m = 48
            \Rightarrow 2^n - 2^m = 48
            \Rightarrow 2^n - 2^m = 64 - 16
           \Rightarrow 2^n - 2^m = 2^6 - 2^4
            Compare both sides, n = 6 and m = 4 ans.
Q.5)
           if A=\not\subset, fond P(A), P(P(A)) and P(P(A))
           A=⊄
Sol.5)
           \Rightarrow n(A) = 0
           No. of subsets of A = 2^0 = 1
           Subsets =⊄
            \therefore P(A) = \{ \not\subset \}
           Here, n(P(A)) = 1
           No. of subsets of P(A) =
            Subsets = \{\not\subset\}, \not\subset
           \therefore P(P(A)) = \{ \not\subset \}, \not\subset
           Here, n(P(P(A))) = 2
           No. of subsets of (P(P(A))) = 2^2 = 4
           Subsets = \{\{\emptyset\}\}, \{\emptyset\}, \{\{\emptyset\}, \emptyset\}, \emptyset
           \therefore (P(P(A))) = \{\{\emptyset\}\}, \{\emptyset\}, \{\{\emptyset\}, \emptyset\}, \emptyset \text{ ans.}
           Show that A - (B - C) = (A - B) \cup (A \cap C)
Q.6)
           L.H.S. A - (\overline{B - C})
Sol.6)
           = A - (B \cap C^1) \dots \{A - B = A \cap B^1\}
            = A \cap (B \cap C^1)^1 \dots \{A - B = A \cap B^1\}
           = A \cap (B^1 \cup C) \dots \{De - morgan's \ law\}
            = (A \cap B^1) \cup (A \cap C) \dots \{Distributive property\}
            = (A - B) \cup (A \cap C) R.H.S. ans.
```

Copyright © www.studiestoday.com

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Q.7)	Draw Venn diagram of $A\Delta B$
Sol.7)	Δ→is called "Symmetric Difference"
	$A\Delta B = (A - B) \cup (B - A)$
	U
	A B
Q.8)	Write in Roster Form $A = \{x: x \text{ is a positive number less than } 10 \text{ and } 2^{x-1} \text{ is an odd number}\}$
Sol.8)	A = {1,2,3,4,5,6,7,8,9}
,	Since, 2^{x-1} is always an odd no. for all $x < 10$
Q.9)	Show that $(A - B) \cap (C - B) = (A \cap C) - B$
Sol.9)	L.H.S. $(A - B) \cap (C - B)$
	$= (A \cap B^{1}) \cap (C \cap B^{1}) \dots \{A - B = A \cap B^{1}\}$
	$=(A\cap C)\cap B^1$ {Distributive property}
	$=(A \cap C) - B$ R.H.S. (proved)
Q.10)	If $y = \{t: t^3 = t; t \in R\}$
Sol.10)	$t^3 = t$
	$\Rightarrow t^3 - t = 0$
	$\Rightarrow t(t^2 - 1) = 0$ \Rightarrow t = 0, t = \pm 1
	$\Rightarrow t = 0, t = \pm 1$ $\therefore y = \{0, -1, 1\} \text{ ans.}$
	$y = \{0, -1, 1\}$ ans.
	$y = \{0, -1, 1\} \text{ ans.}$