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SETS
Class XI

Q.1) Is it true for any sets Aand B; P(4) U P(B) = P(A U B). Justify your answer.
Sol.1) | To check: P(A) UP(B) = P(AUB)

Let A = {1,2} and

B ={2,3}

P(A) = {(1),(2),(1,2), ¢}; P(B) = {(2),(3),(2,3), 0}

AUB =1{1,2,3}

P(A U B) = {(1),(2),(3),(1,2),(2,3),(3,1),(1,2,3), 8}
P(A) u P(B) = {(1),(2),(3),(1,2),(2,3), ¢}
Clearly, P(A) U P(B) + P(A U B) ans.

Q.2) State and prove DE — MORGAN'S LAW.

Sol.2) | De-Morgan’s Law

(J(AuB)t = A' n B!

Letx € (AU B)!

=>x & (AUB)

=>x ¢ Aandx € B

=>x € Al and x € B!

=x € Al UB!

~(AuB)CA'NnB! .. (1)

Now lety € A' n B!

=y & (AUB)

=y € Alandy € B!

=>y&Aandy ¢B

=y & (AUB)

=y € (AU B)!

~A'NBC(AUB)! . 2)

From (1) and (2), (A U B)! = A! a B(proved)
(i) (AnB)' = A'uB?

letx € (AN B)?!

—x & (AN B)

=>x &Aorx ¢B

=>x € Al orx € B!

=x € (A UB?)
~(ANnB)CAYUB! ... (1)

Now lety € A* U B!

=y € Al orx € B!

=y ¢ Aandy ¢ B

=y &ANB

=y € (AnB)!

~AYUBICANB) ... (2) (proved)
From (1) and (2), (A N B)! = A U BY(proved)

Q.3) State and prove DISTRIBUTIVE LAW.

Sol3) |(lAU(BNC)=(AUB)N(AUC)
letx e AU(BNC)

s>x €Aandx € (BNC)

>x€Aor(x €EBandx € ()
=>(x€eAorxeB)and(x e dorx € ()
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=>x € (AuB)andx € (AU ()
=>x€[(AUB)N (AU Q)]
~AUBNCOCAUB)N(AUC) ... (1)
Nowlety e (AUB)N(AUC)
=2>y€(AUB)and (AU ()
=>(y€AoryeB)and(y € Aory € ()
=>y€Aorye(BnC)
=2>y€eAU(BnC)
~(AUB)N(AUC)CAU(BNC) ... (2)
From (1) and (2),AU(BNC) = (AUB) N (AUC) (proved)
SELF (i) AN(BUC)= (ANB)U(ANC)

Q.4) Two finite sets have m and n elements. The number of elements in the power set of first set is 48 more
than the number of elements in power set of the second set. find the values of m and n.

Sol.4) | Lettwo setsare AandB
Givenn(4A) =nandn(B) =m
No. of subsets of Set A = 2™
(OR) No. of elements in P(4)
No. of subsets of Set B = 2™
(OR) No. of elements in P(B)
Given that, 2™ — 2™ = 48

= 2" —2™M =48

52" -2M =64 —-16

= 2" —2m =26 _ 24
Compare both sides, n = 6 and m = 4 ans.

Q5) | if A=¢, fond P(A), P(P(A)) and P (P(P(A)))

Sol.5) | A=¢

=>n(4)=0

No. of subsetsof A =20 =1
Subsets =¢

« P(A) = {¢)

Here, n(P(A)) =1

No. of subsets of P(A).= 2! = 2
Subsets = {¢}, ¢

~P(P(A)) =f{e} ¢

Here, n (P(P(A))) =2

No. of subsets of (P(P(A))) =22 =4
Subsets = {{#}}, {¢}, {{¢}, ¢}, &

« (P(P()) = {{e}}, (¢} {{} ¢} ¢ ans.

Q.6) ShowthatA—(B—-C)=(A-B)u(AnC)

Sol.6) | LHS. A— (B—0)

=A—(BnCY) ... {A-B=AnB"}
=An(BncH . {A-B=ANnBY}
=An(BtU).... {De — morgan's law}
=(ANnBHUUNC) ... {Distributive property}
=(A—B)U(ANC)R.H.S. ans.
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Q.7) Draw Venn diagram of AAB

Sol.7) | A—is called “Symmetric Difference”
AAB=(A—B)U(B—-A)

A B

Q.8) Write in Roster Form A = {x: x is a positive number less than 10 and 2*~1 is an odd number}

Sol.8) | A ={1,2,3,4,5,6,7,8,9}
Since, 2*~ 1 is always an odd no. for all x < 10

Q.9) Showthat(A—B)N(C—-B)=(ANnC)—-B

S0l9) | LHS.(A—B)n(C—B)
=(AnBYn(CnBY) ... {A-B=AnBY}
=(AnC)NB ... {Distributive property}
=(ANC)— BR.H.S. (proved)

Q.10) |Ify={t:t3 =t;t € R}

Sol.10) | t3 =t
=>t3-t=0
=>t(t?-1)=0
>t=0t=+1
~y =1{0,—1,1} ans.
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