

Q.11)	Show that, $(A \cup B \cup C) \cap (A \cap B^1 \cap C^1) \cap C^1 = B \cap C^1$	Т
Sol.11)	L.H.S. $(A \cup B \cup C) \cap (A \cap B^1 \cap C^1) \cap C^1$	\dashv
301.11)	$= (A \cup B \cup C) \cap (A \cap (B^1 \cap C^1)) \cap C^1 \dots \{De - morgan's \ law\}$	
	$= (A \cup B \cup C) \cap (A^1 \cup (B \cap C)) \cap C^1 \dots \{De - morgan's law\}$	
	$\Rightarrow ((B \cup C) \cup A) \cap ((B \cup C) \cup A^1) \cap C^1$	
	$= (B \cup C) \cup (A \cap A^1) \cap C \dots \{Distributive property\}$	
	$= ((B \cup C) \cup \not\subset) \cap C^1 \dots \{A \cap A^1 = \not\subset\}$	
	$= (B \cup C) \cap C^1 \dots \{A \cup C = A\}$	
	$= (B \cap C^1) \cup (C \cap C^1) \dots \{Distributive \ law\}$	
	$= (B \cap C^1) \cup \not\subset$ $= B \cap C^1 \text{ R.H.S. ans.}$	
Q.12)	If A and B are two sets containing and 6 elements respectively, what can be the minimum number of	+
Q.12)	elements in $A \cup B$. Find also maximum number of elements in $A \cup B$ and $A \cap B$.	
Sol.12)	n(A) = 3; $n(B) = 6$	-
301.12)	$A \cup B = 0$ Minimum no. of elements in $A \cup B = 0$	
	Maximum no. of elements in $A \cup B = 9$	
	Maximum no. of elements in $A \cap B = 3$	
Q.13)	From 50students taking examination in Maths, physics and chemistry, each of the students has	-
3,10,7	passed in at least one of the subject, 37 passed maths, 24 passed physics and 43 passed chemistry.	
	At most 19 passed maths & physics, at most 29 passed maths & chemistry and at most 20 passed	
	physics & chemistry.	
	What is the largest possible number that could have passed all the three subjects?	
Sol.13)	Given, $n(M \cup P \cup C) = 50$	
	n(M) = 37, n(C) = 43; n(P) = 24	
	Since, at most if given	
	$\therefore n(M \cap P) \le 19$	
	$n(M \cap C) \le 29$	
	$n(P \cap C) \le 20$	
	$n(M \cup P \cup C) = n(M) + n(P) + n(C) - n(M \cap P) - n(P \cap C) - n(M \cap C) + n(M \cap P \cap C)$	
	$\Rightarrow 37 + 24 + 43 - 19 - 29 - 20 + n(M \cap P \cap C) \le 50$ \Rightarrow n(M \cap P \cap C) \leq 50 - 36	
	$\Rightarrow n(M \cap P \cap C) \le 50 - 50$ $\Rightarrow n(M \cap P \cap C) \le 14$	
	∴ largest possible number that could have passed all the three exams is 14 ans.	
Q.14)	Suppose A_1, A_2, \dots, A_{30} are thirty sets each having 5 elements and B_1, B_2, \dots, B_n are n sets	\dashv
ζ.1+)	with each 3 elements. Let $\bigcup_{i=1}^{30} A_i = \bigcup_{i=1}^{n} B_i = S$ and each element of S belongs to exactly 10 of the	
	A_iS and exactly 9 of the B_iS then find the value of n .	
Sol.14)	$n(A_1), n(A_2), n(A_3) \dots \dots (A_{30}) = 5$	-
,	$U_{i=1}^{30} A_i = S : \text{we get } n(S) = 150$	
	But each element of S belongs to exactly 10 of A_iS	
	$\therefore \frac{150}{10} = 15 \text{ are the number of distinct elements in } S$	
	Also each element of S belong to exactly 9 of the B_iS and each B_i contains 3 elements	
	\therefore and $\bigcup_{i=1}^{n} B_i = S$	
	$\Rightarrow \frac{3n}{9} = 15$	
	$\Rightarrow n = 45$	
1	$\therefore n(B) = 45$ ans.	

Copyright © www.studiestoday.com

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Q.15)	Using properties show that, $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$
Sol.15)	$(A \cup B) - (A \cap B)$
	$= (A \cup B) \cap (A \cap B)^1 \dots \{A - B = A \cap B^1\}$
	$= (A \cup B) \cap (A^1 \cup B^1)\{De - morgan's \ law\}$
	$= [(A \cup B) \cap A^1] \cup [(A \cup B) \cap B^1] \dots \{Distributive law\}$
	$= \left[(A \cap A^1) \cup (B \cap A^1) \right] \cup \left[(A \cap B^1) \cup (B \cap B^1) \right]$
	$= [\emptyset \cup (B-A)] \cup [(A-B) \cup \not\subset]$
	$= (B - A) \cup (A - B) \dots \{\emptyset \cup A = A\}$
	$= (A - B) \cup (B - A) \dots \{A \cup B = B \cup A\}$ R.H.S. (proved)
Q.16)	For any three sets show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$
Sol.16)	Let $(a,b) \in A \times (B \cup C)$
	$\Rightarrow a \in A \text{ and } b \in (B \cup C)$
	$\Rightarrow a \in A \text{ and } b \in B \text{ or } b \in C$
	\Rightarrow $(a \in A \text{ and } b \in B) or (a \in A \text{ and } b \in C)$
	\Rightarrow $(a,b) \in A \times B \text{ or } (a,b) \in A \times C$
	$\Rightarrow (a,b) \in (A \times B) \cup (A \times C)$
	$\Rightarrow (a, b) \in (A \times B) \cup (A \times C)$ $\therefore A \times (B \cup C) \subseteq (A \times B) \cup (A \times C) \dots $
	Now, let $(x, y) \in (A \times B) \cup (A \times C)$
	$\Rightarrow (x,y) \in A \times B \text{ or } (x,y) \in A \times C$
	$\Rightarrow (x \in A \text{ and } y \in B) \text{ or } (x \in A, y \in C)$
	$\Rightarrow x \in A \text{ and } (y \in B \text{ or } y \in C)$
	$\Rightarrow x \in A \text{ and } y \in (B \cup C)$ \Rightarrow (x, y) \in A \times (B \cup C)
	$ \exists (x,y) \in A \times (B \cup C) $ $ \exists (A \times B) \cup (A \times C) \subseteq A \times (B \cup C) \dots $
	From (1) and (2), $A \times (B \cup C) = (A \times B) \cup (A \times C)$
	$110111 (1) \text{ and } (2), H \times (B \cup C) = (H \times B) \cup (H \times C)$