	$\begin{gathered} \text { SETS } \\ \text { Class XI } \end{gathered}$
Q.1)	There are 200 individuals with skin disorder, 120 has exposed to chemical $C_{1}, 50$ to C_{2} and 30 to both C_{1} and C_{2}. Find the number of individuals exposed to (i) C_{1} but not C_{2} (ii) C_{2} but not C_{1} (iii) C_{1} or C_{2} (iv) neither C_{1} nor C_{2}.
Sol.1)	$\begin{aligned} & \text { Given, } \mathrm{n}\left(C_{1}\right)=120 \\ & =\mathrm{n}\left(C_{2}\right)=50 \\ & =\mathrm{n}\left(C_{1} \cap C_{2}\right)=30 \\ & \text { and } \mathrm{n}(\mathrm{U})=200 \\ & \text { (i) } \mathrm{n}\left(C_{1} \cap C_{2}\right)=n\left(C_{1}\right)-\mathrm{n}\left(C_{1} \cap C_{2}\right) \\ & =120-30=90 \\ & \therefore 90 \text { persons exposed to chemical } C_{1} \text { but not } C_{2} \text {. } \\ & \text { (ii) } \mathrm{n}\left(C_{2} \cap C_{1}\right)=\mathrm{n}\left(C_{2}\right)-\mathrm{n}\left(C_{1} \cap C_{2}\right) \\ & =50-30=120 \\ & \therefore 20 \text { persons exposed to chemical } C_{2} \text { but not } C_{1} \\ & \text { (iii) } \mathrm{n}\left(C_{1} \cup C_{2}\right)=n\left(C_{1}\right)+n\left(C_{2}\right)-\mathrm{n}\left(C_{1} \cap C_{2}\right) \\ & =120+50-30=140 \\ & \therefore 140 \text { persons exposed to chemical } C_{1} \text { or } C_{2} \text {. } \\ & \text { (iv) } \mathrm{n}\left(C_{1} \cap C_{2}\right)=\mathrm{n}(\mathrm{U})-n \mathrm{n}\left(C_{1} \cup C_{2}\right) \\ & =200-140=60 \\ & \therefore 60 \text { persons exposed to chemical } C_{1} \text { nor } C_{2} \text {. } \\ & \hline \end{aligned}$
Q.2)	In a class of 35 students 17 have taken mathematics, 10 have taken mathematics but not economics. Find the number of students who have taken economics but not n mathematics, if it is given that each student has taken either maths or economics or both.
Sol.2)	Let $\mathrm{A} \rightarrow$ set of students taken mathematics $\mathrm{B} \rightarrow$ set of students taken economics Given, $n(A \cup B)=35$ $\begin{aligned} & n(A)=17 \\ & n\left(A \cap B^{1}\right)=10 \end{aligned}$ Now, $n\left(A \cap B^{1}\right)=n(A)-n(A \cap B)$ $\begin{aligned} & \Rightarrow 10=17-n(A \cap B) \\ & \Rightarrow n(A \cap B)=7 \end{aligned}$ Now, $n(A \cup B)=n(A)+n(B)-n(A \cap B)$ $\begin{aligned} & \Rightarrow 35=17+n(B)-7 \\ & \Rightarrow 35=10+n(B) \\ & \Rightarrow n(B)=25 \end{aligned}$ Now, $n(B \cap A)=n(B)-n(A \cap B)$ $n\left(B \cap A^{1}\right)=25-7=18$ $\therefore 18$ students have taken economics but not mathematics. Ans.
Q.3)	A market research group conducted a survey of 2000 consumers and reported that 1720 consumers liked product P_{1} and 1450 consumers liked product P_{2}. What is the least number that must have liked both the products?
Sol.3)	Let $\mathrm{A} \rightarrow$ set of consumers who liked product P_{1} $\mathrm{B} \rightarrow$ set of consumers who liked product P_{2} Given, $n(\mathrm{U})=2000$ $\begin{aligned} & n(A)=1720 \\ & n(B)=1450 \end{aligned}$

	We have, $n(A \cup B) \leq n(\mathrm{U})$
	$\Rightarrow n(A)+n(B)-n(A \cap B) \leq n(\mathrm{U})$
$\Rightarrow 1720+1450-n(A \cap B) \leq 2000$	
$\Rightarrow 3170-2000 \leq n(A \cap B)$	
$\Rightarrow 1170 \leq n(A \cap B)$	
	OR $n(A \cap B) \geq 1170$ \therefore the least number of $n(A \cap B)$ is 1170 ans.
Q.4)	A survey shows that 63% of the Americans like cheese whereas 76% like apples. If $x \%$ of
the Americans like both cheese \& apples, find the value of x.	

StudiesToday

	$\begin{aligned} \hline \text { (vi) } H \text { and } T \text { but not } I= & (b+e)-e=b \\ & =300 \end{aligned} \quad \begin{aligned} \text { (vii) None of the newspaper } & =10000-(\text { at least one }) \\ & =10000-6000=4000 \text { ans } . \end{aligned}$
Q.6)	A college awarded 38 medals in football, 15 in Basketball and 20 in Cricket. If these medals went to a total of a 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
Sol.6)	Given, $n(F \cup B \cup C)=58$ $n(F)=38$ $n(B)=15$ $n(C)=20$ $n(F \cap B \cap C)=3(\text { also } e)$ We have, $\begin{aligned} & n(F \cup B \cup C)=n(F)+n(B)+n(C)-n(F \cap B)-n(B \cap C)-n(F \cap C)+ \\ & n(F \cap B \cap C) \\ & \Rightarrow 58=38+15+20-n(F \cap B)-n(B \cap C)-n(F \cap C)+3 \\ & \Rightarrow 58=76-n(F \cap B)-n(B \cap C)-n(F \cap C) \\ & \Rightarrow n(F \cap B)+n(B \cap C)+-n(F \cap C)=18 \\ & \Rightarrow(b+e)+(e+f)+(d+e)=18 \\ & \Rightarrow b+d+f+3 e=18 \\ & \Rightarrow b+d+f+3(3)=18 \ldots \ldots \ldots . . .\{\because \mathrm{e}=n(F \cap B \cap C)=3\} \\ & \Rightarrow b+d+r=18-9=9 \end{aligned}$ $\therefore 9$ man received medals in exactly two of the three sports.
Q.7)	A survey of 500 television viewers produced the following information: 285 watch football, 195 watch hockey, 115 watch basketball, 45 watch football \& basketball, 70 watch football \& hockey, 50 watch hockey \& basketball, 50 do not watch any of the three games. How many watch all the three games? How many watch exactly one of the three games? How many watch exactly two the three games?
Sol.7)	$\begin{aligned} & \text { Given, } n(\cup)=500 \text { universal } \\ & n(F)=285=a+b+e+d \\ & n(H)=195=b+c+e+f \\ & n(B)=115=d+e+f+g \\ & n(F \cap B)=45=d+e \\ & n(F \cap H)=70=b+e \\ & n(H \cap B)=50=e+f \\ & n\left(F^{1} \cap B^{1} \cap H^{1}\right)=50 \\ & \text { We have, } n\left(F^{1} \cap B^{1} \cap H^{1}\right)=n(\cup)-n(F \cup B \cup H) \\ & \quad \quad(n o n e)=(\text { universal })-(\text { at least one }) \\ & \Rightarrow 50=500-n(F \cup B \cup H) \\ & \Rightarrow n(F \cup B \cup H)=450 \\ & \text { Now, } n(F \cup B \cup H)=n(F)+n(B)+n(H)-n(F \cap B)-n(B \cap H)-n(F \cap H)+ \\ & n(F \cap B \cap H) \\ & \Rightarrow 450=285+195+115-45-50-70+n(F \cap B \cap H) \\ & \Rightarrow 450=430+n(F \cap B \cap H) \\ & \Rightarrow n(F \cap B \cap H)=20 \\ & \text { i.e., } e=20 \\ & \therefore f=30, b=50, d=25, g=40, c=95, a=190 \\ & 20 \text { percent watch all the three games } \\ & \text { Exactly one of the games }=a+c+g \end{aligned}$

StudiesToday

	$\begin{aligned} & =190+95+40=325 \\ \text { Exactly two of the games } & =b+d+f \\ & =50+25+30=105 \text { ans. } \end{aligned}$
Q.8)	Show that $A \cup B=A \cap B \Rightarrow A=B$.
Sol.8)	```Given, \(A \cup B=A \cap B\) To prove: \(A=B\) Let \(x \in A\) \(\Rightarrow x \in(A \cup B)\) \(\Rightarrow x \in(A \cap B)\)............. \{given \(A \cup B=A \cap B\}\) \(\Rightarrow x \in A\) and \(x \in B\) \(\Rightarrow A C B\)........ (1) Let \(y \in B\) \(\Rightarrow y \in(A \cup B)\) \(\Rightarrow y \in(A \cap B)\)............. \{given \(A \cup B=A \cap B\}\) \(\Rightarrow y \in A\) and \(y \in B\) \(\Rightarrow B C A\)........ (2) From (1) and (2), \(A=B\) (proved)```
Q.9)	Show that $P(A \cap B)=P(A) \cap P(B)$
Sol.9)	$\begin{aligned} & \text { Let } X \in P(A \cap B) \\ & \Rightarrow X C(A \cup B) \\ & \Rightarrow X \subset A \text { and } X C B \\ & \Rightarrow X \in P(A) \text { and } X \in P(B) \\ & \Rightarrow X \in P(A) \cap P(B) \\ & \Rightarrow P(A \cap B) \subset P(A) \cap P(B) \\ & \text { Let } Y \in P(A) \cap P(B) \text { (1) } \\ & \Rightarrow Y \in P(A) \text { and } Y \in P(B) \\ & \Rightarrow Y C A \text { and } Y C B \\ & \Rightarrow Y C(A \cap B) \\ & \Rightarrow Y C P(A \cap B) \\ & \Rightarrow P(A) \cap P(B) C P(A \cap B) \text {..........(2) } \\ & \text { From }(1) \text { and }(2), P(A \cap B)=P(A) \cap P(B) \text { (proved) } \end{aligned}$
Q.10)	Assume that, $P(A)=P(B)$. Show that, $A=B$.
Sol.10)	

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

From (1) and (2), $A=B$ (proved)

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

