Downloaded from www.studiestoday.com

CHAPTER - 9

SEQUENCES AND SERIES

KEY POINTS

- A sequence is a function whose domain is the set N of natural numbers.
- A sequence whose range is a subset of R is called a real sequence.
- General A.P. is,

$$
a, a+d, a+2 d,
$$

\qquad

- $a_{n}=a+(n-1) d=n^{\text {th }}$ term
- $S_{n}=$ Sum of first n terms of A.P.

$$
\begin{aligned}
& =\frac{\mathrm{n}}{2}[\mathrm{a}+l] \text { where } l=\text { last term. } \\
& =\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]
\end{aligned}
$$

- If a, b, c are in A.P. then $a \pm k, b \pm k, c \pm k$ are in A.P., ak, bk, ck are also in A.P., $k \neq 0$
- Three numbers in A.P.

$$
a-d, a, a+d
$$

- Arithmetic mean between a and b is $\frac{a+b}{2}$.
- If $A_{1}, A_{2}, A_{3}, \ldots \ldots . . A_{n}$ are inserted between a and b, such that the resulting sequence is A.P. then,

$$
A_{n}=a+n\left(\frac{b-a}{n+1}\right)
$$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- $S_{k}-S_{k-1}=a_{k}$
- $a_{m}=n, a_{n}=m \Rightarrow a_{r}=m+n-r$
- $S_{m}=S_{n} \Rightarrow S_{m+n}=0$
- $S_{p}=q$ and $S_{q}=p \Rightarrow S_{p+q}=-p-q$
- In an A.P., the sum of the terms equidistant from the beginning and from the end is always same, and equal to the sum of the first and the last term
- G.P. (Geometrical Progression)

$$
\begin{aligned}
& a, a r, a r^{2}, \ldots \ldots(\text { General G.P.) } \\
& a_{n}=a r^{n-1} \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}, \quad r \neq 1
\end{aligned}
$$

- Geometric mean between a and b is $\sqrt{a b}$
- Reciprocals of terms in GP always form a G.P.
- If $G_{1}, G_{2}, G_{3}, \ldots G_{n}$ are n numbers inserted between a and b so that the resulting sequence is G.P., then

$$
G_{k}=a\left(\frac{b}{a}\right)^{\frac{k}{n+1}}, 1 \leq k \leq n
$$

- In a G.P., the product of the terms equidistant from the beginning and from the end is always same and equal to the product of the first and the last term.
- If each term of a G.P. be raised to some power then the resulting terms are also in G.P.
- Sum of infinite G.P. is possible if $|r|<1$ and sum is given by $\frac{a}{1-r}$
- $\sum_{r=1}^{n} r=\frac{n(n+1)}{2}$

Downloaded from www.studiestoday.com

- $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{r=1}^{n} r^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. If $n^{\text {th }}$ term of an A.P. is $6 n-7$ then write its $50^{\text {th }}$ term.
2. If $S_{n}=3 n^{2}+2 n$, then write a_{2}
3. Which term of the sequence,

3, 10, 17, is $136 ?$
4. If in an A.P. $7^{\text {th }}$ term is 9 and $9^{\text {th }}$ term is 7 , then find $16^{\text {th }}$ term.
5. If sum of first n terms of an A.P is $2 n^{2}+7 n$, write its $n^{\text {th }}$ term.
6. Which term of the G.P.,

2, $1, \frac{1}{2}, \frac{1}{4}, \ldots \ldots \ldots \ldots \ldots \ldots .$. is $\frac{1}{1024} ?$
7. If in a G.P., $a_{3}+a_{5}=90$ and if $r=2$ find the first term of the G.P.
8. In G.P. $2,2 \sqrt{2}, 4, \ldots \ldots . . ., 128 \sqrt{2}$, find the $4^{\text {th }}$ term from the end.
9. If the product of 3 consecutive terms of G.P. is 27 , find the middle term
10. Find the sum of first 8 terms of the G.P. $10,5, \frac{5}{2}, \ldots \ldots$.
11. Find the value of $5^{1 / 2} \times 5^{1 / 4} \times 5^{1 / 8} \ldots . .$. upto infinity.
12. Write the value of $0 . \overline{3}$
13. The first term of a G.P. is 2 and sum to infinity is 6 , find common ratio.
14. Write the $\mathrm{n}^{\text {th }}$ term of the series, $\frac{3}{7.11^{2}}+\frac{5}{8.12^{2}}+\frac{7}{9.13^{2}}+\ldots .$.

Downloaded from www.studiestoday.com

15. Find a_{5} of the series whose $\mathrm{n}^{\text {th }}$ term is $2^{\mathrm{n}}+3$.
16. In an infinite G.P., every term is equal to the sum of all terms that follow it. Find r
17. In an A.P.,
$8,11,14$, find $S_{n}-S_{n-1}$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

18. Write the first negative term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots \ldots$.
19. Determine the number of terms in A.P. 3, 7, 11, 407. Also, find its $11^{\text {th }}$ term from the end.
20. How many numbers are there between 200 and 500, which leave remainder 7 when divided by 9 .
21. Find the sum of all the natural numbers between 1 and 200 which are neither divisible by 2 nor by 5 .
22. Find the sum of the sequence,

$$
-1, \frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2},----, \frac{10}{3}
$$

23. If in an A.P. $\frac{a_{7}}{a_{10}}=\frac{5}{7}$ find $\frac{a_{4}}{a_{7}}$
24. In an A.P. sum of first 4 terms is 56 and the sum of last 4 terms is 112. If the first term is 11 then find the number of terms.
25. Solve : $1+6+11+16+$ \qquad $+\mathrm{x}=148$
26. The ratio of the sum of n terms of two A.P.'s is $(7 n-1)$: $(3 n+11)$, find the ratio of their $10^{\text {th }}$ terms.
27. If the $I^{\text {st }}, 2^{\text {nd }}$ and last terms of an A.P are a, b and c respectively, then find the sum of all terms of the A.P.
28. If $\frac{b+c-2 a}{a}, \frac{c+a-2 b}{b}, \frac{a+b-2 c}{c}$ are in A.P. then show that

Downloaded from www.studiestoday.com

29. If $A=1+r^{a}+r^{2 a}+\ldots \ldots$. up to infinity, then express r in terms of ' a ' A ' A.
30. Insert 5 numbers between 7 and 55 , so that resulting series is A.P.
31. Find the sum of first n terms of the series, $0.7+0.77+0.777+\ldots .$.
32. The sum of first three terms of a G.P. is 15 and sum of next three terms is 120 . Find the sum of first n terms.
33. Prove that, $0.03 \overline{1}=\frac{7}{225}$
[Hint : $0.03 \overline{1}=0.03+0.001+0.0001+\ldots \ldots .$. Now use infinite G.P.]

LONG ANSWER TYPE QUESTIONS (6 MARKS)

34. Prove that the sum of n numbers between a and b such that the resulting series becomes A.P. is $\frac{n(a+b)}{2}$.
35. A square is drawn by joining the mid points of the sides of a square. A third square is drawn inside the second square in the same way and the process is continued indefinitely. If the side of the first square is 15 cm , then find the sum of the areas of all the squares so formed.
36. If a, b, c are in G.P., then prove that

$$
\frac{1}{a^{2}-b^{2}}=\frac{1}{b^{2}-c^{2}}-\frac{1}{b^{2}}
$$

[Hint : Put b = ar, $\mathrm{c}=\mathrm{ar}^{2}$]
37. Find two positive numbers whose difference is 12 and whose arithmetic mean exceeds the geometric mean by 2.
38. If a is A.M. of b and c and c, G_{1}, G_{2}, b are in G.P. then prove that

$$
\mathrm{G}_{1}^{3}+\mathrm{G}_{2}^{3}=2 \mathrm{abc}
$$

39. Find the sum of the series,

$$
\text { 1.3.4 + 5.7.8 + 9.11.12 + upto } n \text { terms. }
$$

40. Evaluate $\sum^{10}(2 r-1)^{2}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

ANSWERS

1. 293
2. $20^{\text {th }}$
3. $4 \mathrm{n}+5$
4. $\frac{9}{2}$
5. 3
6. 5
7. $\frac{2}{3}$
8. 35
9. $3 n+5$
10. 102,367
11. 7999
12. $\frac{3}{5}$
13. 36
14. $\frac{(b+c-2 a)(a+c)}{2(b-a)}$
15. $\left(\frac{A-1}{A}\right)^{1 / a}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

30. 15, 23, 31, 39, 47
31. $\frac{15}{7}\left(2^{n}-1\right)$
32. 16, 4 39. $\frac{n(n+1)}{3}\left(48 n^{2}-16 n-14\right)$
33. 1330
