	SEQUENCE AND SERIES Class XI
Q.1)	The sum of n terms of two A.P.'S are in the ratio $(3 n+8)$: $(7 n+15)$. Find the ratio of their $12^{\text {th }}$ terms.
Sol.1)	$1^{\text {st }}$ A.P. $2^{\text {nd }}$ A.P. First term: a First term: a^{1} Difference: d Difference: d^{1} $12^{\text {th }}$ term: a_{12} $12^{\text {th }}$ term: $a^{1}{ }_{12}$ Sum: S_{n} Sum: $S^{1}{ }_{n}$ To find: $\frac{a_{12}}{a^{1} 12}$ i.e., $\frac{a+11 d}{a^{1}+11 d^{1}}$ Given: $\frac{S_{n}}{S^{1} n}=\frac{3 n+18}{7 n+15}$ $\begin{aligned} & \Rightarrow \frac{\frac{n}{2}[2 a+(n-1) d]}{\frac{n}{2}\left[2 a^{1}+(n-1) d^{1}\right]}=\frac{3 n+8}{7 n+15} \\ & \Rightarrow \frac{[2 a+(n-1) d]}{\left[2 a^{1}+(n-1) d^{1}\right]}=\frac{3 n+8}{7 n+15} \end{aligned}$ Put $n=23$ both the sides $\begin{aligned} & \Rightarrow \frac{2 a+22 d}{2 a^{1}+22 d^{1}}=\frac{69+8}{161+15} \\ & \Rightarrow \frac{2(a+11 d)}{2\left(a^{1}+11 d^{1}\right)}=\frac{77}{176} \\ & \Rightarrow \frac{a_{12}}{a^{1}{ }_{12}}=\frac{7}{16} \end{aligned}$ Hence, the required ratio is $7: 16$ ans.
Q.2)	The ratio of the sum of $m \& n$ terms of an A.P.'S is $m^{2}: n^{2}$ show that the ratio of the $m^{\text {th }}$ term and $n^{\text {th }}$ terms is $(2 m-1):(2 n-1)$.
Sol.2)	$\begin{aligned} & \text { To prove: } \frac{a_{m}}{a_{n}}=\frac{2 m-1}{2 n-1} \\ & \text { Given: } \frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}} \\ & \Rightarrow \frac{\frac{2}{[2 a+(m-1) d]}}{\frac{n}{2}\left[2 a^{1}+(n-1) d^{1}\right]}=\frac{m^{2}}{n^{2}} \\ & \Rightarrow \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n} \\ & \Rightarrow 2 a n+(n m-n) d=2 a m+(n m-m) \cdot d=0 \\ & \Rightarrow 2 a(n-m)+d(n m-n-n m+m)=0 \\ & \Rightarrow 2 a(n-m)-d(n-m)=0 \\ & \Rightarrow(n-m)[2 a-d]=0 \\ & \Rightarrow(2 a-d)=0 \\ & \Rightarrow d=2 a \\ & \text { Now, } \frac{a_{m}}{a_{n}}=\frac{a+(m-1)(2 a)}{a+(n-1)(2 a)} \\ & =\frac{a+(1+2 m-2)}{a+(1+2 n-2)} \\ & \Rightarrow \frac{a_{m}}{a_{n}}=\frac{2 m-1}{2 n-1} \text { (proved) } \end{aligned}$
Q.3)	If the sum of n terms of an A.P. is $p n+q n^{2}$. Find the common difference.
Sol.3)	$\begin{aligned} & \text { We have, } S_{n}=p n+q n^{2} . \\ & \text { Put } n=1, S_{1}=p+q \\ & \quad \Rightarrow a_{1}=p+q \ldots \ldots\left\{\because S_{1}=a_{1}\right\} \\ & \text { Put } n=2, S_{2}=2 p+4 q \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow a_{1}+a_{2}=2 p+4 q \ldots \ldots\left\{\because S_{1}=a_{1}+a_{2}\right\} \\ & \Rightarrow p+q+a_{2}=2 p+4 q \\ & \Rightarrow a_{2}=p+3 q \\ \text { Now, } d & =a_{2}-a_{1} \\ & =(p+3 q)-(p+q) \\ & d=2 q \text { ans. } \end{aligned}$
Q.4)	The interior angles of a polygon are in A.P. The smallest angle is 120° \& he common difference is 5°. Find the number of sides of the polygon.
Sol.4)	Let $n \rightarrow$ no. of sides in the polygon Interior angles form an A.P. with $a=120^{\circ}, d=5^{\circ}$, no. of term $=n$ $\begin{gather*} \text { Then, } S_{n}=\frac{n}{2}[240+(n-1) 5] \\ =\frac{n}{2}[240+5 n-5] \tag{ii}\\ S_{n}=\frac{n}{2}[5 n+235] \ldots \ldots \tag{i} \end{gather*}$ Also, sum of all interior angles in any polygon with n-sides $=(n-2) \times 180^{\circ}$ Equation (i) \& (ii) $\begin{aligned} & \Rightarrow \frac{n}{2}[5 n+235]=(n-2) \times 180^{\circ} \\ & \Rightarrow 5 n^{2}+235 n=(n-2) \times 180^{\circ} \\ & \Rightarrow 5 n^{2}+235 n=360 n-720 \\ & \Rightarrow 5 n^{2}+125 n+720=0 \\ & \Rightarrow n^{2}-25 n+144=0 \\ & \Rightarrow(n-16)(n-9)=0 \\ & \Rightarrow n=16 \text { or } n=9 \end{aligned}$ When $n=16$, Then, $a_{16}=a+15 d$ $\begin{aligned} & =120+15(5) \\ & =195>180^{\circ}\left(\text { not possible } \because \text { interior angle cannot }>180^{\circ}\right) \end{aligned}$ When $n=9$, Then, $a_{9}=a+8 d$ $\begin{aligned} & =120+8(5) \\ & =160<180^{\circ} \text { (possible) } \end{aligned}$ \therefore no. of sides in the polygon $=9$ ans.
Q.5)	The sum of the first term p, q, r terms of an A.P. are a, b, c respectively. Show that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Sol.5)	Let $A \rightarrow 1$ st term of A.P. $D \rightarrow$ common difference Then $a_{p}=a=\frac{p}{2}[2 A+(p-1) D]$ (or) $\frac{a}{2}=\frac{1}{2}[2 A+(p-1) D]$ $\Rightarrow a_{q}=b=\frac{q}{2}[2 A+(q-1) D]$ (or) $\frac{b}{2}=\frac{1}{2}[2 A+(q-1) D]$ And $a_{r}=c=\frac{r}{2}[2 A+(r-1) D]$ (or) $\frac{c}{2}=\frac{1}{2}[2 A+(r-1) D]$ Now, taking L.H.S., $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)$ Putting value of $\frac{a}{p}, \frac{b}{q}, \frac{c}{r}$ from the above equations:

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Q.6)	Insert 3 A.M.'S between 3 and 19.
Sol.6)	Here, $a=3, b=19 \& n=3$ Lt A.M.'S are $A_{1}, A_{2}, \& A_{3}$ Now, $d=\frac{b-a}{n+1}=\frac{19-3}{3+1}=\frac{16}{4}=4$ $\begin{aligned} & A_{1}=a+d=3+4=7 \\ & A_{2}=a+2 d=3+8=11 \\ & A_{3}=a+3 d=3+12=15 \end{aligned}$ \therefore required no.s are $7,11,15$ ans.
Q.7)	For what value of $n, \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the A.M. between $\& b$.
Sol.7)	We have, $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=$ A.M. $\begin{aligned} & \Rightarrow \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\frac{a+b}{2} \\ & \Rightarrow 2 a^{n+1}+2 b^{n+1}=(a+b)\left(a^{n}+b^{n}\right) \\ & \Rightarrow 2 a^{n+1}+2 b^{n+1}=a^{n+1}+a b^{n}+b a^{n}+b^{n+1} \\ & \Rightarrow 2 a^{n+1}-a^{n+1}+2 b^{n+1}-b^{n+1}=a b^{n}+b a^{n} \\ & \Rightarrow a^{n+1}-b^{n+1}=a b^{n}+b a^{n} \\ & \Rightarrow a^{n+1}-b a^{n}=a b^{n}-b^{n+1} \\ & \Rightarrow a^{n}(a-b)=b^{n}(a-b) \\ & \Rightarrow a^{n}=b^{n} \\ & \Rightarrow \frac{a^{n}}{b^{n}}=1 \\ & \Rightarrow\left(\frac{a}{b}\right)^{n}=1 \\ & \Rightarrow\left(\frac{a}{b}\right)^{n}=\left(\frac{a}{b}\right)^{0} \\ & \Rightarrow n=0 \text { ans. } \end{aligned}$
Q.8)	Between 1 and 31, m numbers are inserted so that resulting sequence is an A.P. if the ratio of the $7^{\text {th }} \&(m-1)^{\text {th }}$ number is 5 : 9 . Find the value of m.
Sol.8)	We have, $a=1, b=31 \& n=m$ Now $d=\frac{b-a}{n+1}$ $\Rightarrow d=\frac{31-1}{m+1}=\frac{30}{m+1}$ Given, $\frac{A_{7}}{A_{m-1}}=\frac{5}{9}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\Rightarrow \frac{a+7 d}{a+(m-1) d}=\frac{5}{9}$
	$\Rightarrow \frac{1+7\left(\frac{30}{m+1}\right)}{a+(m-1)\left(\frac{30}{m+1}\right)}=\frac{5}{9}$
	$\Rightarrow \frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}$
\Rightarrow	$\frac{m+211}{31 m-19}=\frac{5}{9}$
$\Rightarrow 9 m+1899=155 m-145$	
$\Rightarrow 146 m=2044$	
	$\Rightarrow m=\frac{2044}{146}=14$
	$\Rightarrow m=14$ ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

