

	SEQUENCE AND SERIES				
0.1)	Class XI				
Q.1)	The sum of <i>n</i> terms of two A.P.'S are in the ratio $(3n + 8)$: $(7n + 15)$. Find the ratio of the in 12 th terms				
Sol 1)					
501.1)					
	First torm: a	Z A.P.			
	Difference: d	Pifference: d1			
	12^{th} torm: a	1 oth terms of			
	Sum S	12° term: a_{12}			
	$\frac{3411.5_n}{a_{12}} = \frac{a_{12}}{a_{13}}$	Sum S n			
	To find: $\frac{a_{12}}{a_{12}^1}$ i.e., $\frac{a_{111}}{a_{1111}^1}$				
	Given: $\frac{S_n}{S_n} = \frac{3n+18}{5}$				
	$\frac{n}{n}[2a+(n-1)d] = 2n+9$				
	$\Rightarrow \frac{2^{[2n+(n-1)d^{1}]}}{n[2n^{1}+(n-1)d^{1}]} = \frac{3n+6}{7n+15}$				
	$\begin{bmatrix} 2^{2}(2a+(n-1)a) \end{bmatrix}$ $3n+8$				
	$\Rightarrow \frac{1}{[2a^1 + (n-1)d^1]} = \frac{1}{7n+15}$				
	Put $n = 23$ both the sides				
	$\Rightarrow \frac{2a+22d}{a+2a+2a} = \frac{69+8}{161+47}$				
	$2a^{1}+22a^{1}$ 161+15 2(a+11d) 77				
	$\Rightarrow \frac{1}{2(a^1 + 11d^1)} \equiv \frac{1}{176}$				
	$\Rightarrow \frac{a_{12}}{a_{12}^4} = \frac{7}{16}$				
	Hence, the required ratio is 7: 16 ans.				
Q.2)	The ratio of the sum of $m \& n$ terms of an A.P.'S is $m^2: n^2$ show that the ratio of the m^{th}				
	term and n^{th} terms is $(2m-1)$: $(2n-1)$.				
Sol.2)	To prove: $\frac{a_m}{a} = \frac{2m-1}{2m-1}$				
	$a_n 2n-1$ $S_m m^2$				
	Given: $\frac{m}{S_n} = \frac{1}{n^2}$				
	$\rightarrow \frac{m}{2}[2a+(m-1)d] - m^2$				
	$\Rightarrow \frac{\pi}{2} [2a^{1} + (n-1)d^{1}] = \frac{\pi}{n^{2}}$				
	$\Rightarrow \frac{2a + (m-1)d}{2a + (m-1)d} = \frac{m}{2m}$				
	2a+(n-1)d n 2am + (mm - m)d - 2am + (mm - m)d	d = 0			
	$\Rightarrow 2an + (nm - n)d = 2am + (nm - m).d = 0$				
	$\Rightarrow 2a(n-m) + d(nm-n-nm+m) = 0$ $\Rightarrow 2a(n-m) - d(n-m) = 0$				
	$\Rightarrow 2u(n-m) = u(n-m) = 0$ $\Rightarrow (n-m)[2a-d] = 0$				
	$\Rightarrow (n - n)[2n - n] = 0$ $\Rightarrow (2n - d) = 0$				
	$\Rightarrow d = 2a$				
	$a_m = a + (m-1)(2a)$				
	Now, $\frac{1}{a_n} - \frac{1}{a + (n-1)(2a)}$				
	$=\frac{a+(1+2m-2)}{a+(1+2m-2)}$				
	$\Rightarrow \frac{a_m}{2m} = \frac{2m-1}{2m-1} (\text{proved})$				
	$a_n = \frac{2n-1}{2n-1}$ (proved)				
Q.3)	If the sum of <i>n</i> terms of an A.P. is $pn + qn^2$.	Find the common difference.			
Sol.3)	We have, $S_n = pn + qn^2$.				
	Put $n = 1, S_1 = p + q$				
	$\Rightarrow a_1 = p + q \dots \{ \because S_1 = a_1 \}$				
	Put $n = 2, S_2 = 2p + 4q$				

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow a_1 + a_2 = 2p + 4q \dots \{: S_1 = a_1 + a_2\}$		
	$\Rightarrow p + q + a_2 = 2p + 4q$		
	$\Rightarrow a_2 = p + 3q$		
	Now, $u = u_2 - u_1$ - $(n + 3a) - (n + a)$		
	$\begin{array}{l} -(p+3q)-(p+q)\\ d=2q \text{ ans.} \end{array}$		
Q.4)	The interior angles of a polygon are in A.P. The smallest angle is 120° & he common		
	difference is 5° . Find the number of sides of the polygon.		
Sol.4)	Let $n \rightarrow \text{no. of sides in the polygon}$		
	Interior angles form an A.P. with $a = 120^{\circ}$, $d = 5^{\circ}$, no. of term $= n$		
	Then, $S_n = \frac{n}{2} [240 + (n-1)5]$		
	$=\frac{n}{2}[240+5n-5]$		
	$S_n = \frac{n}{2} [5n + 235]$ (i)		
	Also, sum of all interior angles in any polygon with n-sides = $(n - 2) \times 180^{\circ}$ (ii)		
	Equation (i) & (ii) r^{n}		
	$\Rightarrow \frac{-}{2}[5n+235] = (n-2) \times 180$		
	$\Rightarrow 5n^2 + 235n = (n-2) \times 180$		
	$\Rightarrow 5n^{2} + 235n = 360n - 720$ $\Rightarrow 5n^{2} + 125n + 720 = 0$		
	$\Rightarrow 5n + 125n + 720 = 0$ $\Rightarrow n^2 - 25n + 144 = 0$		
	$\Rightarrow (n-16)(n-9) = 0$		
	\Rightarrow <i>n</i> = 16 or <i>n</i> = 9		
	When $n = 16$,		
	Then, $a_{16} = a + 15d$		
	= 120 + 15(5) = 105 > 100° (net pescible winterior angle connet > 100°)		
	$= 195 > 180$ (not possible \div interior angle cannot > 180) When $n = 9$		
	Then, $a_0 = a + 8d$		
	= 120 + 8(5)		
	$= 160 < 180^{\circ}$ (possible)		
	\therefore no. of sides in the polygon= 9 ans.		
Q.5)	The sum of the first term p, q, r terms of an A.P. are a, b, c respectively. Show that		
	$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$		
Sol.5)	Let $A \rightarrow 1$ st term of A.P.		
	$D \rightarrow \text{common difference}$		
	Then $a_p = a = \frac{p}{2} [2A + (p-1)D]$		
	$(or)\frac{a}{2} = \frac{1}{2}[2A + (p-1)D]$		
	$\Rightarrow a_q = b = \frac{q}{2} [2A + (q - 1)D]$		
	$(or)\frac{b}{2} = \frac{1}{2}[2A + (q-1)D]$		
	And $a_r = c = \frac{r}{2} [2A + (r - 1)D]$		
	$(or)\frac{c}{2} = \frac{1}{2}[2A + (r-1)D]$		
	Now, taking L.H.S., $\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q)$		
	Putting value of $\frac{a}{p}$, $\frac{b}{q}$, $\frac{c}{r}$ from the above equations:		

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

		_		
	$=\frac{1}{2}[2A + (p-1)D](q-r) + \frac{1}{2}[2A + (q-1)D](r-p) + \frac{1}{2}[2A + (r-1)D](p-q)$			
	$= \frac{1}{-\{2A(q-r) + (n-1)D(q-r) + 2A(r-p) + (q-1)D(r-p) + 2A(p-q)\}}$			
	$2 \frac{2(2n(q-r) + (p-1)D(q-r) + 2n(r-p) + (q-1)D(r-p) + 2n(p-q))}{(r-1)D(r-q)}$			
	$= \frac{1}{24(q-r)} + \frac{1}{(n-1)D(q-r)} + \frac{24(r-n)}{4(q-1)D(r-n)} + \frac{24(n-q)}{4(n-q)}$			
	$= \frac{1}{2} \left\{ 2A(q-r) + (p-1)D(q-r) + 2A(r-p) + (q-1)D(r-p) + 2A(p-q) + (m-1)D(m-q) \right\}$			
	$1_{(2)}$			
	$= \frac{1}{2} \{ 2A[q - r + r - p + p - q] + D[pq - r - q + r + rq - pq - r + p + rp - rq - p] $			
	+q			
	$=\frac{1}{2}[2A(0) + D(0)]$			
	$=\frac{1}{-}(0)$			
	= 0 R.H.S. ans.			
Q.6)	Insert 3 A.M.'S between 3 and 19.			
Sol.6)	Here, $a = 3, b = 19 \& n = 3$			
	Lt A.M.'S are $A_1, A_2, \& A_3$			
	Now, $d = \frac{1}{n+1} = \frac{1}{3+1} = \frac{1}{4} = 4$			
	$A_1 = a + a = 3 + 4 = 7$ $A_2 = a + 2d = 3 + 8 = 11$			
	$A_2 = a + 2a = 3 + 6 = 11$ $A_3 = a + 3d = 3 + 12 = 15$			
	∴ required no.s are 7,11,15 ans.			
Q.7)	For what value of $n, \frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ is the A.M. between & b.			
Sol.7)	We have, $\frac{a^{n+1}+b^{n+1}}{a} = A.M.$			
	$\Rightarrow \frac{a^{n+1} + b^{n+1}}{a^n} = \frac{a + b}{a^n}$			
	$a^{n+b^{n}} = (a+b)(a^{n}+b^{n})$			
	$\Rightarrow 2a^{n+1} + 2b^{n+1} = a^{n+1} + ab^n + ba^n + b^{n+1}$			
	$\Rightarrow 2a^{n+1} - a^{n+1} + 2b^{n+1} - b^{n+1} = ab^n + ba^n$			
	$\Rightarrow a^{n+1} - b^{n+1} = ab^n + ba^n$ $\Rightarrow a^{n+1} - ba^n - ab^n - b^{n+1}$			
	$\Rightarrow a^{n} = ba^{n} = ab^{n} = b^{n}$ $\Rightarrow a^{n}(a-b) = b^{n}(a-b)$			
	$\Rightarrow a^n = b^n$			
	$\Rightarrow \frac{a^n}{b^n} = 1$			
	$\Rightarrow \left(\frac{a}{b}\right)^n = 1$			
	$\Rightarrow \left(\frac{a}{b}\right)^n = \left(\frac{a}{b}\right)^0$			
	$\Rightarrow n = 0$ ans.			
Q.8)	Between 1 and 31, m numbers are inserted so that resulting sequence is an A.P. if the			
Sol 9)	ratio of the 7" & $(m-1)^{m}$ number is 5:9. Find the value of m . We have $a = 1, b = 31, 8, n = m$			
301.6)	Now $d = \frac{b-a}{a}$			
	$d = \frac{31-1}{2} = \frac{30}{2}$			
	$\Rightarrow u = \frac{1}{m+1} = \frac{1}{m+1}$			
1	Given, $\frac{m_{\ell}}{m_{\ell}} = \frac{1}{2}$			

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow \frac{a+7d}{a+(m-1)d} = \frac{5}{9}$		
	$1+7\left(\frac{30}{m+1}\right) \qquad 5$		
	$\Rightarrow \frac{1}{a + (m-1)\left(\frac{30}{m+1}\right)} = \frac{1}{9}$		
	$\Rightarrow \frac{m+1+210}{m+1+20m+20} = \frac{5}{2}$		
	$\Rightarrow \frac{m+1+30m-30}{2} = \frac{5}{2}$		
	31m-19 = 9 $\Rightarrow 9m \pm 1899 = 155m = 145$		
	$\Rightarrow 5m + 1659 = 155m = 145$ $\Rightarrow 146m = 2044$		
	$\Rightarrow m = \frac{2044}{1000} = 14$		
	$\rightarrow m = \frac{1}{146} = 11$		
0 9)	$\rightarrow m - 14$ dis.		
Q.5)	If $a\left(\frac{-}{b}+\frac{-}{c}\right)$, $b\left(\frac{-}{c}+\frac{-}{a}\right)$, $c\left(\frac{-}{a}+\frac{-}{b}\right)$ are in A.P. show that a, b, c are also in A.P.		
Sol.9)	We have, $a\left(\frac{1}{b}+\frac{1}{c}\right)$, $b\left(\frac{1}{c}+\frac{1}{a}\right)$, $c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P.		
	Adding 1 in each term		
	$\Rightarrow a\left(\frac{1}{b}+\frac{1}{c}\right)+1, b\left(\frac{1}{c}+\frac{1}{a}\right)+1, c\left(\frac{1}{a}+\frac{1}{b}\right)+1$ are also in A.P.		
	$\Rightarrow a\left[\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right], b\left[\frac{1}{c}+\frac{1}{a}+\frac{1}{b}\right], c\left[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]$ are in A.P.		
	$\Rightarrow 2b\left[\frac{1}{c} + \frac{1}{a} + \frac{1}{b}\right] = a\left[\frac{1}{b} + \frac{1}{c} + \frac{1}{a}\right] + c\left[\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right]$		
	$\Rightarrow 2b\left[\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right] = \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)(a+c)$		
	$\Rightarrow 2b = a + c$		
	<i>a</i> , <i>b</i> , <i>c</i> are in A.P. (proved)		
Q.10)	Of the sum of three numbers in A.P. is 24 & their product is 440. Find the numbers.		
Sol.10)	Let the numbers are $a - d$, a , $a + d$		
	Sum = 24		
	$\therefore a - d + a + a + a + d = 24$ $\Rightarrow 2a - 24$		
	$\Rightarrow 3u = 24$ $\Rightarrow a = 8$		
	$\Rightarrow u = 0$ $\Rightarrow \text{Product} = 440$		
	$\Rightarrow (a-d)(a)(a+d) = 440$		
	Put $a = 8$		
	$\Rightarrow (8-d)(8)(8+d) = 440$		
	$\Rightarrow (8-d)(8+d) = \frac{440}{8} = 55$		
	$\Rightarrow 64 - d^2 = 55$		
	$\Rightarrow d^2 = 9$		
	$\Rightarrow d = 3 \& d = -3$		
	For $a = 8 \& a = 3$		
	NO.S are $11,0,5$		
L	•• required no.s are 5,8,11 (0r) 11,8,5	L	

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.