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 SEQUENCE AND SERIES 
Class XI 

 

Q.1) The sum of 𝑛 terms of two A.P.’S are in the ratio (3𝑛 + 8): (7𝑛 + 15). Find the ratio of 
their 12th terms. 

 

Sol.1)  

1st A.P. 
First term: 𝑎 
Difference: 𝑑 
12th term: 𝑎12 
Sum: 𝑆𝑛 

2nd A.P. 
First term: 𝑎1 
Difference: 𝑑1 
12th term: 𝑎1

12 
Sum: 𝑆1

𝑛 

To find: 
𝑎12

𝑎1
12

 i.e., 
𝑎+11𝑑

𝑎1+11𝑑1 

Given: 
𝑆𝑛

𝑆1
𝑛

=
3𝑛+18

7𝑛+15
 

⇒ 
𝑛

2
[2𝑎+(𝑛−1)𝑑]

𝑛

2
[2𝑎1+(𝑛−1)𝑑1]

=
3𝑛+8

7𝑛+15
 

⇒ 
[2𝑎+(𝑛−1)𝑑]

[2𝑎1+(𝑛−1)𝑑1]
=

3𝑛+8

7𝑛+15
 

Put 𝑛 = 23 both the sides 

⇒ 
2𝑎+22𝑑

2𝑎1+22𝑑1 =
69+8

161+15
 

⇒ 
2(𝑎+11𝑑)

2(𝑎1+11𝑑1)
=

77

176
 

⇒ 
𝑎12

𝑎1
12

=
7

16
 

Hence, the required ratio is 7: 16 ans. 

 

Q.2) The ratio of the sum of 𝑚 & 𝑛 terms of an A.P.’S is 𝑚2: 𝑛2 show that the ratio of the 𝑚𝑡ℎ 

term and 𝑛𝑡ℎ terms is (2𝑚 − 1): (2𝑛 − 1). 

 

Sol.2) To prove: 
𝑎𝑚

𝑎𝑛
=

2𝑚−1

2𝑛−1
 

Given: 
𝑆𝑚

𝑆𝑛
=

𝑚2

𝑛2  

⇒ 
𝑚

2
[2𝑎+(𝑚−1)𝑑]

𝑛

2
[2𝑎1+(𝑛−1)𝑑1]

=
𝑚2

𝑛2  

⇒ 
2𝑎+(𝑚−1)𝑑

2𝑎+(𝑛−1)𝑑
=

𝑚

𝑛
 

⇒ 2𝑎𝑛 + (𝑛𝑚 − 𝑛)𝑑 = 2𝑎𝑚 + (𝑛𝑚 − 𝑚). 𝑑 = 0 
⇒ 2𝑎(𝑛 − 𝑚) + 𝑑(𝑛𝑚 − 𝑛 − 𝑛𝑚 + 𝑚) = 0 
⇒ 2𝑎(𝑛 − 𝑚) − 𝑑(𝑛 − 𝑚) = 0 
⇒ (𝑛 − 𝑚)[2𝑎 − 𝑑] = 0 
⇒ (2𝑎 − 𝑑) = 0 
⇒ 𝑑 = 2𝑎 

Now, 
𝑎𝑚 

𝑎𝑛
=

𝑎+(𝑚−1)(2𝑎)

𝑎+(𝑛−1)(2𝑎)
 

 =  
𝑎+(1+2𝑚−2)

𝑎+(1+2𝑛−2)
 

⇒ 
𝑎𝑚 

𝑎𝑛
=

2𝑚−1

2𝑛−1
 (proved) 

 

Q.3) If the sum of 𝑛 terms of an A.P. is 𝑝𝑛 + 𝑞𝑛2. Find the common difference.  

Sol.3) We have, 𝑆𝑛 = 𝑝𝑛 + 𝑞𝑛2. 
Put 𝑛 = 1, 𝑆1 = 𝑝 + 𝑞 
  ⇒ 𝑎1 = 𝑝 + 𝑞 ……….. {∵  𝑆1 =  𝑎1} 
Put 𝑛 = 2, 𝑆2 = 2𝑝 + 4𝑞 
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  ⇒ 𝑎1 + 𝑎2 = 2𝑝 + 4𝑞 ……….. {∵  𝑆1 =  𝑎1 + 𝑎2} 
⇒ 𝑝 + 𝑞 + 𝑎2 = 2𝑝 + 4𝑞 
⇒ 𝑎2 = 𝑝 + 3𝑞 

Now, 𝑑 = 𝑎2 − 𝑎1 
 =  (𝑝 + 3𝑞) − (𝑝 + 𝑞) 
 𝑑 = 2𝑞 ans. 

Q.4) The interior angles of a polygon are in A.P. The smallest angle is 120° & he common 

difference is 5°. Find the number of sides of the polygon. 

 

Sol.4) Let 𝑛 → no. of sides in the polygon 

Interior angles form an A.P. with 𝑎 = 120°, 𝑑 = 5°, no. of term = 𝑛 

Then, 𝑆𝑛 =
𝑛

2
[240 + (𝑛 − 1)5] 

 =
𝑛

2
[240 + 5𝑛 − 5] 

𝑆𝑛 =
𝑛

2
[5𝑛 + 235] ………….. (i) 

Also, sum of all interior angles in any polygon with n-sides = (𝑛 − 2) × 180° ……….. (ii) 
Equation (i) & (ii) 

⇒ 
𝑛

2
[5𝑛 + 235] = (𝑛 − 2) × 180° 

⇒5𝑛2 + 235𝑛 = (𝑛 − 2) × 180° 
⇒ 5𝑛2 + 235𝑛 = 360𝑛 − 720 
⇒ 5𝑛2 + 125𝑛 + 720 = 0 
⇒ 𝑛2 − 25𝑛 + 144 = 0 
⇒ (𝑛 − 16)(𝑛 − 9) = 0 
⇒ 𝑛 = 16 𝑜𝑟 𝑛 = 9 
When  𝑛 = 16,  
Then, 𝑎16 = 𝑎 + 15𝑑 
  = 120 + 15(5) 
  = 195 > 180° (not possible ∵ interior angle cannot > 180°) 
When  𝑛 = 9,  
Then, 𝑎9 = 𝑎 + 8𝑑 
  = 120 + 8(5) 
  = 160 < 180° (possible) 
∴ no. of sides in the polygon= 9 ans. 

 

Q.5) The sum of the first term 𝑝, 𝑞, 𝑟 terms of an A.P. are 𝑎, 𝑏, 𝑐 respectively. Show that 
𝑎

𝑝
(𝑞 − 𝑟) +

𝑏

𝑞
(𝑟 − 𝑝) +

𝑐

𝑟
(𝑝 − 𝑞) = 0 

 

Sol.5) Let 𝐴 →1st term of A.P. 
𝐷 → common difference 

Then 𝑎𝑝 = 𝑎 =
𝑝

2
[2𝐴 + (𝑝 − 1)𝐷] 

(or) 
𝑎

2
=

1

2
[2𝐴 + (𝑝 − 1)𝐷] 

⇒ 𝑎𝑞 = 𝑏 =
𝑞

2
[2𝐴 + (𝑞 − 1)𝐷] 

(or) 
𝑏

2
=

1

2
[2𝐴 + (𝑞 − 1)𝐷] 

And 𝑎𝑟 = 𝑐 =
𝑟

2
[2𝐴 + (𝑟 − 1)𝐷] 

(or) 
𝑐

2
=

1

2
[2𝐴 + (𝑟 − 1)𝐷] 

Now, taking L.H.S., 
𝑎

𝑝
(𝑞 − 𝑟) +

𝑏

𝑞
(𝑟 − 𝑝) +

𝑐

𝑟
(𝑝 − 𝑞) 

Putting value of 
𝑎

𝑝
,

𝑏

𝑞
,

𝑐

𝑟
 from the above equations: 
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=
1

2
[2𝐴 + (𝑝 − 1)𝐷](𝑞 − 𝑟) +

1

2
[2𝐴 + (𝑞 − 1)𝐷](𝑟 − 𝑝) +

1

2
[2𝐴 + (𝑟 − 1)𝐷](𝑝 − 𝑞) 

=  
1

2
{2𝐴(𝑞 − 𝑟) + (𝑝 − 1)𝐷(𝑞 − 𝑟) + 2𝐴(𝑟 − 𝑝) + (𝑞 − 1)𝐷(𝑟 − 𝑝) + 2𝐴(𝑝 − 𝑞)

+ (𝑟 − 1)𝐷(𝑝 − 𝑞)} 

=  
1

2
{2𝐴(𝑞 − 𝑟) + (𝑝 − 1)𝐷(𝑞 − 𝑟) + 2𝐴(𝑟 − 𝑝) + (𝑞 − 1)𝐷(𝑟 − 𝑝) + 2𝐴(𝑝 − 𝑞) 

+(𝑟 − 1)𝐷(𝑝 − 𝑞)} 

=  
1

2
{2𝐴[𝑞 − 𝑟 + 𝑟 − 𝑝 + 𝑝 − 𝑞] + 𝐷[𝑝𝑞 − 𝑟 − 𝑞 + 𝑟 + 𝑟𝑞 − 𝑝𝑞 − 𝑟 + 𝑝 + 𝑟𝑝 − 𝑟𝑞 − 𝑝

+ 𝑞] 

=  
1

2
[2A(0) + D(0)] 

=  
1

2
(0) 

=  0 R.H.S. ans. 

Q.6) Insert 3 A.M.’S between 3 and 19.  

Sol.6) Here, 𝑎 = 3, 𝑏 = 19 & 𝑛 = 3 
Lt A.M.’S are 𝐴1, 𝐴2, & 𝐴3 

Now, 𝑑 =
𝑏−𝑎

𝑛+1
=

19−3

3+1
=

16

4
= 4 

𝐴1 = 𝑎 + 𝑑 = 3 + 4 = 7 
𝐴2 = 𝑎 + 2𝑑 = 3 + 8 = 11 
𝐴3 = 𝑎 + 3𝑑 = 3 + 12 = 15 
∴ required no.s are 7,11,15 ans. 

 

Q.7) For what value of 𝑛,
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛  is the A.M. between & 𝑏.  

Sol.7) We have, 
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛  = A.M. 

⇒ 
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛 =
𝑎+𝑏

2
  

⇒ 2𝑎𝑛+1 + 2𝑏𝑛+1 = (𝑎 + 𝑏)(𝑎𝑛 + 𝑏𝑛) 
⇒ 2𝑎𝑛+1 + 2𝑏𝑛+1 = 𝑎𝑛+1 + 𝑎𝑏𝑛 + 𝑏𝑎𝑛 + 𝑏𝑛+1 
⇒ 2𝑎𝑛+1 − 𝑎𝑛+1 + 2𝑏𝑛+1 − 𝑏𝑛+1 = 𝑎𝑏𝑛 + 𝑏𝑎𝑛 
⇒ 𝑎𝑛+1 − 𝑏𝑛+1 = 𝑎𝑏𝑛 + 𝑏𝑎𝑛 
⇒ 𝑎𝑛+1 − 𝑏𝑎𝑛 = 𝑎𝑏𝑛 − 𝑏𝑛+1 
⇒ 𝑎𝑛(𝑎 − 𝑏) = 𝑏𝑛(𝑎 − 𝑏) 
⇒ 𝑎𝑛 = 𝑏𝑛 

⇒ 
𝑎𝑛

𝑏𝑛 = 1 

⇒ (
𝑎

𝑏
)

𝑛
= 1 

⇒ (
𝑎

𝑏
)

𝑛
=  (

𝑎

𝑏
)

0
 

⇒ 𝑛 = 0 ans. 

 

Q.8) Between 1 and 31, 𝑚 numbers are inserted so that resulting sequence is an A.P. if the 

ratio of the 7th & (𝑚 − 1)𝑡ℎ number is 5: 9. Find the value of 𝑚. 

 

Sol.8) We have, 𝑎 = 1, 𝑏 = 31 & 𝑛 = 𝑚 

Now 𝑑 =
𝑏−𝑎

𝑛+1
 

⇒ 𝑑 =
31−1

𝑚+1
=

30

𝑚+1
 

Given, 
𝐴7

𝐴𝑚−1
=

5

9
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⇒ 
𝑎+7𝑑

𝑎+(𝑚−1)𝑑
=

5

9
 

⇒ 
1+7(

30

𝑚+1
)

𝑎+(𝑚−1)(
30

𝑚+1
)

=
5

9
 

⇒ 
𝑚+1+210

𝑚+1+30𝑚−30
=

5

9
 

⇒ 
𝑚+211

31𝑚−19
=

5

9
 

⇒ 9𝑚 + 1899 = 155𝑚 − 145 
⇒ 146𝑚 = 2044 

⇒ 𝑚 =
2044

146
= 14 

⇒ 𝑚 = 14 ans. 

Q.9) If 𝑎 (
1

𝑏
+

1

𝑐
) , 𝑏 (

1

𝑐
+

1

𝑎
) , 𝑐 (

1

𝑎
+

1

𝑏
) are in A.P. show that 𝑎, 𝑏, 𝑐 are also in A.P.  

Sol.9) We have, 𝑎 (
1

𝑏
+

1

𝑐
) , 𝑏 (

1

𝑐
+

1

𝑎
) , 𝑐 (

1

𝑎
+

1

𝑏
) are in A.P. 

Adding 1 in each term 

⇒ 𝑎 (
1

𝑏
+

1

𝑐
) + 1, 𝑏 (

1

𝑐
+

1

𝑎
) + 1, 𝑐 (

1

𝑎
+

1

𝑏
) + 1 are also in A.P. 

⇒ 𝑎 [
1

𝑏
+

1

𝑐
+

1

𝑎
] , 𝑏 [

1

𝑐
+

1

𝑎
+

1

𝑏
] , 𝑐 [

1

𝑎
+

1

𝑏
+

1

𝑐
] are in A.P. 

⇒ 2𝑏 [
1

𝑐
+

1

𝑎
+

1

𝑏
] =  𝑎 [

1

𝑏
+

1

𝑐
+

1

𝑎
] +  𝑐 [

1

𝑎
+

1

𝑏
+

1

𝑐
] 

⇒ 2𝑏 [
1

𝑎
+

1

𝑏
+

1

𝑐
] =  (

1

𝑎
+

1

𝑏
+

1

𝑐
) (𝑎 + 𝑐) 

⇒ 2𝑏 = 𝑎 + 𝑐 
𝑎, 𝑏, 𝑐 are in A.P. (proved) 

 

Q.10) Of the sum of three numbers in A.P. is 24 & their product is 440. Find the numbers.  

Sol.10) Let the numbers are 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑 
Sum = 24 
∴ 𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑎 + 𝑑 = 24 
⇒ 3𝑎 = 24 
⇒ 𝑎 = 8 
⇒ Product = 440 
⇒ (𝑎 − 𝑑)(𝑎)(𝑎 + 𝑑) = 440 
Put 𝑎 = 8 
⇒ (8 − 𝑑)(8)(8 + 𝑑) = 440 

⇒ (8 − 𝑑)(8 + 𝑑) =
440

8
= 55 

⇒ 64 − 𝑑2 = 55 
⇒ 𝑑2 = 9 
⇒ 𝑑 = 3 & 𝑑 = −3 
For 𝑎 = 8 & 𝑑 = 3 
No.s are 11,8,5 
∴ required no.s are 5,8,11 (or) 11,8,5 
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