	SEQUENCE AND SERIES Class XI
Q.11)	The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is 112 . If its first term is 11 . Find the number of terms.
Sol.11)	$\begin{aligned} & \text { Given, } a_{1}+a_{2}+a_{3}+a_{4}=56 \text { and } a_{1}=11 \\ & \Rightarrow a+(a+d)+(a+2 d)+(a+3 d)=56 \\ & \Rightarrow 4 a+6 d=56 \\ & \Rightarrow 44+6 d=56 \\ & \Rightarrow 6 d=12 \\ & \Rightarrow d=12 \end{aligned}$ Now, sum of least four terms is 42 $\begin{aligned} & \Rightarrow a+(n-1) d+a+(n-2) d+a+(n-3) d+a+(n-4) d=112 \\ & \Rightarrow 4 a+d(n-1+n-2+n-3+n-4)=112 \\ & \Rightarrow 44+2(4 n-10)=112 \\ & \Rightarrow 44+8 n-20=112 \\ & \Rightarrow 8 n=112-24 \\ & \Rightarrow 8 n=88 \\ & n=11 \text { ans. } \end{aligned}$
Q.12)	Find the sum of integers from 1 to 100 which are divisible by 2 or 5.
Sol.12)	The no.s which are divisible by 2 or 5 from 1 to 100 are The no.s which are divisible by 2 or 5 from 1 to 100 are $2,4,5,6,8,10,12, \ldots100$ There are two sequences in above equation
	G.P.
Q.13)	The sum of first three terms of a G.P. is $\frac{13}{12}$ \& their product is -1 . Find the common ratio \& their terms.
Sol.13)	Let the terms are $\frac{a}{r}, a, a r$ Product $=-1$ $\begin{aligned} & \Rightarrow \frac{a}{r} \cdot a \cdot a r=-1 \\ & \Rightarrow a^{3}=-1 \\ & \Rightarrow a=-1 \\ & \text { Sum }=\frac{13}{12} \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow \frac{a}{r}+a+a r=\frac{13}{12} \\ & \Rightarrow a\left(\frac{1}{r}+1+r\right)=\frac{13}{12} \\ & \Rightarrow(-1)\left[\frac{1+r+r^{2}}{r}\right]=\frac{13}{12} \\ & \Rightarrow \frac{1+r+r^{2}}{r}=\frac{-13}{12} \\ & \Rightarrow 12+12 r+12 r^{2}=-13 r \\ & \Rightarrow 12 r^{2}+25 r+12=0 \\ & \Rightarrow 12 r^{2}+16 r+9 r+12=0 \\ & \Rightarrow 4 r[3 r+4]+3(3 r+4)=0 \\ & \Rightarrow(3 r+4)(4 r+3)=0 \\ & \Rightarrow r=\frac{-4}{3} \text { and } r=\frac{-3}{4} \end{aligned}$ For $a=-1$ and $r=\frac{-4}{3}$ the terms are $\frac{3}{4},-1, \frac{4}{3}$ For $a=-1$ and $r=\frac{-3}{4}$ The term are $\frac{4}{3},-1, \frac{3}{4}$ \therefore required term are $\frac{3}{4},-1, \frac{4}{3}$ or $\frac{4}{3},-1, \frac{3}{4}$
Q.14)	The sum of three numbers in G.P. is 56 . If we subtract 1, 7, 21 from these numbers, we obtain an A.P. find the numbers.
Sol.14)	Let the no.s in G.P. are $a+a r+a r^{2}$ Given, $a+a r+a r^{2}=56$ $\begin{equation*} \Rightarrow a\left(1+r+r^{2}\right)=56 \ldots \tag{i} \end{equation*}$ We have, $a-1, a r-7, a r^{2}-21$ are in A.P. $\begin{align*} & \Rightarrow 2(a r-7)=(a-1)+\left(a r^{2}-21\right) \\ & \Rightarrow 2 a r-14=a+a r^{2}-22 \\ & \Rightarrow a r^{2}-2 a r+a=8 \\ & \Rightarrow a\left(r^{2}-2 r+1\right)=8 \text {.................... (ii) } \tag{ii} \end{align*}$ Dividing (i) by (ii) $\begin{aligned} & \Rightarrow \frac{a\left(1+r+r^{2}\right)}{a\left(r^{2}-2 r+1\right)}=\frac{56}{8}=7 \\ & \Rightarrow 1+r+r^{2}=7 r^{2}-14 r+7 \\ & \Rightarrow 6 r^{2}-15 r+6=0 \\ & \Rightarrow 2 r^{2}-5 r+2=0 \\ & \Rightarrow 2 r^{2}-4 r-r+2=0 \\ & \Rightarrow 2 r(r-2)-1(r-2)=0 \\ & \Rightarrow(2 r-1)(r-2)=0 \\ & \Rightarrow r=\frac{1}{2} \& r=2 \end{aligned}$ Put $r=\frac{1}{2}$ in eq. (i) $\begin{aligned} & \therefore a\left(1+\frac{1}{2}+\frac{1}{4}\right)=56 \\ & \Rightarrow a\left(\frac{7}{4}\right)=56 \\ & \Rightarrow a=\frac{4 \times 56}{1} \\ & \Rightarrow a=32 \end{aligned}$ $\text { For } r=2$ $\Rightarrow a(1+2+4)=56$ $\Rightarrow a(7)=56$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow a=8 \\ & \therefore \text { for } a=8 \& r=2 \\ & \text { No.s are } 8,16,32 \\ & \text { For } a=32 \& r=\frac{1}{2} \\ & \text { No.s are } 32,16,8 \\ & \therefore \text { required no.s are } 8,16,32 \text { or } 32,16,8 \text { ans. } \end{aligned}$
Q.15)	A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places. Find the common ratio.
Sol.15)	Let the G.P. contains ($2 n$) no. of terms We have $a_{1}+a_{2}+a_{3}+\ldots a_{2 n}=5\left(a_{1}+a_{3}+a_{5}+\ldots \ldots . n\right.$ terms $)$ $a+a r+a r^{2}+\cdots \ldots \ldots \ldots(2 n)$ terms $=5\left(a+a r^{2}+a r^{4}+\cdots \ldots . . n\right.$ terms $)$ \leftarrow G.P. $1^{\text {st }}$ term $=a$ \leftarrow G.P. $1^{\text {st }}$ term $=a$ Ratio $=r$ Ratio $=r^{2}$ No. of term $=2 n$ No. of term $=n$ $\begin{aligned} & \Rightarrow a\left(\frac{r^{2 n}-1}{r-1}\right)=5 a\left(\frac{\left(r^{2}\right)^{n-1}}{r^{2}-1}\right) \\ & \Rightarrow \frac{r^{2 n-1}}{r-1}=5\left[\frac{r^{2 n-1}}{(r+1)(r-1)}\right] \\ & \Rightarrow 1=\frac{5}{r+1} \\ & \Rightarrow r+1=5 \\ & \Rightarrow r=4 \text { ans. } \end{aligned}$
Q.16)	If $\frac{a+b x}{a b-x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$, then show that $a, b, c \& d$ are in G.P.
Sol.16)	Consider, $\begin{align*} & \Rightarrow \frac{a+b x}{a b-x}=\frac{b+c x}{b-c x} \\ & \Rightarrow a b+b^{2} x-a c x-b c x^{2}=a b+a c x-b^{2} x-b c \\ & \Rightarrow 2 b^{2} x=2 a c x \\ & \Rightarrow b^{2}=a c \\ & \therefore a, b, c \text { are in G.P............... (i) } \tag{i} \end{align*}$ Now consider, $\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$ $\begin{align*} & \Rightarrow b c+c^{2} x-b d x-c d=b c+b d x-c^{2} x-c d x^{2} \\ & \Rightarrow 2 c^{2} x=2 b d x \\ & \Rightarrow c=b d \\ & \therefore b, c, d \text { are in G.P. (ii) } \tag{ii} \end{align*}$ From (i) \& (ii) a, b, c, d are in G.P.
Q.17)	If a, b, c, d are in G.P. then show that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.
Sol.17)	Given, a, b, c, d are in G.P. Let $a=a, b=a r, c=a r^{2}, d=a r^{3}$ To prove, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P. i.e., $\left(b^{n}+c^{n}\right)^{2}=\left(a^{n}+b^{n}\right) .\left(c^{n}+d^{n}\right)$ Taking L.H.S. $\left(b^{n}+c^{n}\right)^{2}$ $=\left[(a r)^{n}+\left(a r^{2}\right)^{n}\right]^{2}$ $=\left[a^{n} r^{n}+a^{n} r^{2 n}\right]^{2}$ $=a^{2 n} \cdot r^{2 n}\left[1+r^{n}\right]^{2}$ Taking RHS $\left(a^{n}+b^{n}\right) .\left(c^{n}+d^{n}\right)$ $=\left(a^{n}+(a r)^{n}\right) \cdot\left(\left(a r^{2}\right)^{n}+\left(a r^{3}\right)^{n}\right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\left(a^{n}+a^{n} r^{n}\right) \cdot\left(a^{n} r^{2 n}+a^{n} r^{3 n}\right) \\ & =a^{n}\left(1+r^{n}\right) \cdot a^{n} r^{2 n}\left(1+r^{n}\right) \\ & =a^{2 n} r^{2 n}\left(1+r^{n}\right)^{2} \\ & \therefore \text { LHS }=\text { RHS } \\ & \therefore\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right) \text { are in G.P. } \end{aligned}$
Q.18)	If a and b are the roots of $x^{2}-3 x+p=0$ and c, d are the roots of $x^{2}-12 x+q=0$, where a, b, c, d form a G.P. show that $(q+p):(q-p)=17: 15$.
Sol.18)	Given, $a \& b$ are roots of $x^{2}-3 x+p=0$ $\Rightarrow a+b=3 \ldots \ldots \ldots \ldots \ldots\left\{\begin{array}{c} \because \alpha+\beta=\frac{-b}{a} \\ \alpha \beta=\frac{c}{d} \end{array}\right\}$ And $a b=p$ Also c and d are the roots of $x^{2}-12 x+q=0$ $\Rightarrow c+d=12$ And $c d=q$ a, b, c and d are in G.P. $\Rightarrow a=a, b=a r, c=a r^{2}, d=a r^{3}$ to prove $\frac{q+p}{q-p}=\frac{17}{15}$ taking LHS $\frac{q+p}{q-p}$ $\begin{align*} & =\frac{c d+a b}{c d-a b} \ldots \ldots\left\{\begin{array}{c} \because \mathrm{cd}=\mathrm{q} \\ a b=p \end{array}\right\} \\ & =\frac{\left(a^{2}\right)\left(a^{3}\right)+(a)(a r)}{\left(a^{2}\right)\left(a^{3}\right)-(a)(a r)} \\ & =\frac{a^{2} r^{5}+a^{2} r}{a^{2} r^{5}-a^{2} r} \\ & =\frac{a^{2} r+\left(r^{4}+1\right)}{a^{2} r-\left(r^{4}-1\right)} \\ & \therefore \frac{q+p}{q-p}=\frac{r^{4}+1}{r^{4}-1} \ldots \ldots \ldots \ldots . . \tag{i} \end{align*}$ Now we have, $\Rightarrow a+b=3$ $\Rightarrow a+a r=3$ $\begin{aligned} & \Rightarrow c+d=12 \\ & \Rightarrow a r^{2}+a r^{3}=12 \end{aligned}$ $\begin{equation*} \Rightarrow a r^{2}(1+r)=3 \tag{iii} \end{equation*}$ Dividing (iv) by (iii) $\begin{aligned} & \therefore \frac{a r^{2}(1+r)}{a r^{2}(1+r)}=\frac{12}{3} \\ & \Rightarrow r^{2}=4 \text { put in eq.(i) } \\ & \therefore \frac{q+p}{a-p}=\frac{(4)^{2}+1}{(4)^{2}-1} \\ & =\frac{17}{15} \end{aligned}$ $\therefore(q+p):(q-p)=17: 15 \text { ans }$
Q.19)	The ratio of the A.M. and G.M. of two possible numbers a and b is m : n. Show that $a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.
Sol.19)	$\begin{aligned} & \text { Given, } \frac{A . M .}{G . M .}=\frac{m}{n} \\ & \Rightarrow \frac{a+b}{2 \sqrt{a b}}=\frac{m}{n} \end{aligned}$ Apply componendo and dividendo $\left(\frac{N+D}{N-D}\right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow \frac{a+b+2 \sqrt{a b}}{a+b-2 \sqrt{a b}}=\frac{m+n}{m-n} \\ & \Rightarrow \frac{(\sqrt{a})^{2}+(\sqrt{b})^{2}+2 \sqrt{a} \sqrt{b}}{(\sqrt{a})^{2}+(\sqrt{b})^{2}-2 \sqrt{a} \sqrt{b}}=\frac{m+n}{m-n} \\ & \Rightarrow \frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}-\sqrt{b})^{2}}=\frac{m+n}{m-n} \\ & \Rightarrow \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{m+n}}{\sqrt{m-n}} \end{aligned}$ Apply componendo and dividendo $\begin{aligned} & \Rightarrow \frac{(\sqrt{a}+\sqrt{b})+(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})-(\sqrt{a}-\sqrt{b})}=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}} \\ & \Rightarrow \frac{2 \sqrt{a}}{2 \sqrt{b}}=\frac{\sqrt{m+n}+\sqrt{m-n}}{\sqrt{m+n}-\sqrt{m-n}} \end{aligned}$ Squaring both sides $\begin{aligned} & \Rightarrow \frac{a}{b}=\frac{(m+n)+(m-n)+2 \sqrt{m+n} \sqrt{m-n}}{(m+n)+(m-n)-2 \sqrt{m+n} \sqrt{m-n}} \\ & \Rightarrow \frac{a}{b}=\frac{2 m+2 \sqrt{m^{2}-n^{2}}}{2 m-2 \sqrt{m^{2}-n^{2}}} \\ & \Rightarrow \frac{a}{b}=\frac{2\left(m+\sqrt{m^{2}-n^{2}}\right)}{2\left(m-\sqrt{m^{2}-n^{2}}\right)} \\ & \therefore a: b=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right) \text { ans. } \end{aligned}$
Q.20)	If a, b, c are in A.P., b, c, d are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a, c, e are in G.P.
Sol. 20	Given, a, b, c are in A.P. $\Rightarrow 2 b=a c$ \qquad Given, b, c, d are in G.P. $\begin{equation*} \Rightarrow c^{2}=b d \tag{i} \end{equation*}$ \qquad Given, $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. $\begin{align*} & \Rightarrow \frac{2}{d}=\frac{1}{c}+\frac{1}{e} \\ & \Rightarrow \frac{2}{d}=\frac{e+c}{c e} \\ & \Rightarrow \frac{d}{2}=\frac{e c}{e+c} \\ & \Rightarrow d=\frac{2 e c}{e+c} \ldots \tag{iii} \end{align*}$ To prove, a, c, e are in G.P. i.e., $c^{2}=a e$ we have, $c^{2}=b d \ldots \ldots$. from (ii) put value of b and d from eq. (i) and (ii) $\begin{aligned} & \Rightarrow c^{2}=\left(\frac{a+c}{2}\right)\left(\frac{2 e c}{e+c}\right) \\ & \Rightarrow c^{2}(e+c)=(a+c)(e c) \\ & \Rightarrow c^{3}=a c e \\ & \Rightarrow c^{2}=a e \\ & \therefore a, c, e \text { are in G.P. (proved) } \end{aligned}$
Q.21)	Find the sum to n terms of given series $5+55+555+\ldots$.
Sol.21)	Let $S_{n}=5+55+555+\ldots . . . n$ terms $S_{n}=5[1+1+111+\cdots \ldots n$ terms $]$ Multiply \& divide by 9 $=\frac{5}{9}[9+99+999+\cdots \ldots \text { terms }]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\frac{5}{9}\left(10+10^{2}+10^{3}+\cdots \ldots n \text { terms }\right)-(1+1+1+\cdots \ldots n \text { terms }) \\ & \quad \leftarrow G \cdot P a=1 ; r=10 \rightarrow \\ & =\frac{5}{9}\left[10\left(\frac{10^{n}-1}{10-1}\right)-n\right] \\ & =\frac{5}{9}\left[\frac{10^{n+1}-10}{9}-n\right] \\ & \therefore S_{n}=\frac{5}{8^{1}}\left[10^{n+1}-10-9 n\right] \text { ans. } \end{aligned}$
Q.22)	Find the sum of the series to n terms $0.6+0.66+0.666+\ldots n$ terms.
Sol.22)	Let $S_{n}=0.6+0.66+0.666+\ldots n$ terms $S_{n}=6[0.1+0.11+0.111+\cdots \ldots \ldots \ldots . n$ terms $]$ Multiply \& divide by 9 $\begin{aligned} & =\frac{6}{9}[0.9+0.99+0.999+\cdots \ldots n \text { terms }] \\ & =\frac{2}{3}((1-0.1)+(1-0.01)+(1-0.001)+\cdots \ldots n \text { terms }) \\ & =\frac{2}{3}(1+1+1+\cdots \ldots n \text { terms })-(0.1+0.11+0.111+\ldots \ldots n \text { terms }) \\ & =\frac{2}{3}\left[n-\left(\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\cdots \ldots n \text { terms }\right)\right] \\ & \quad \leftarrow G . P: a=\frac{1}{10} ; r=\frac{1}{10} \rightarrow \\ & =\frac{2}{3}\left[n-\frac{1}{10}\left(\frac{1-\frac{1}{10^{n}}}{1-\frac{1}{10}}\right)\right] \\ & =\frac{2}{3}\left[n-\frac{\frac{1}{10}\left(1-\frac{1}{10}\right)}{\frac{9}{10}}\right] \\ & =\frac{2}{3}\left[\frac{9 n-1+\frac{1}{10^{n}}}{9}\right] \\ & \therefore S_{n}=\frac{2}{27}\left[\frac{9 n-1+\frac{1}{10^{n}}}{9}\right] \text { ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

