Downloaded from www.studiestoday.com StudiesToday

	SEQUENCE AND SERIES - SPECIAL SERIES Class XI
Q.17)	Find the sum to n terms $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5$......... n terms.
Sol.17)	The general term of this series given by $\begin{aligned} & \text { an }=(n)(n+1)(n+2) \\ & a_{n}=n\left(n^{2}+3 n+2\right) \\ & a_{n}=n^{3}+3 n^{2}+2 n \\ & \text { Now, } \sum n=\sum a n \\ & \quad=\sum n^{3}+3 n^{2}+2 n \\ & \quad=\sum n^{3}+3 \sum n^{2}+2 \sum n \\ & =\frac{n^{2}(n+1)^{2}}{4}+\frac{3 n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2} \\ & =n(n+1)\left[\frac{n(n+1)}{4}+\frac{(2 n+1)}{2}+1\right] \\ & =n(n+1)\left[\frac{n^{2}+n+4 n+2+4}{4}\right] \\ & = \\ & =\frac{n(n+1)\left(n^{2}+5 n+6\right)}{4} \\ & S^{n}=\frac{(n+1)(n+2)(n+3)}{4} \text { ans. } \end{aligned}$
Q.18)	Find the sum to n terms $3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{3}+\ldots \ldots . . . n$ terms
Sol.18)	General term of this series is $\begin{aligned} & a_{n}=(2 n+1)\left(n^{2}\right) \\ & a_{n}=\left(2 n^{3}+n^{2}\right) \\ & \text { Now, } S^{n}=\sum a n \\ & \quad=\sum\left(2 n^{3}+n^{2}\right) \\ & \quad=2 \sum n^{3}+\sum n^{2} \\ & =2 \frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{6} \\ & =n(n+1)\left[\frac{n(n+1)}{4}+\frac{(2 n+1)}{2}\right] \\ & =n(n+1)\left[\frac{3 n^{2}+3 n+2 n+1}{6}\right] \\ & = \\ & =\frac{n(n+1)\left(3 n^{2}+5 n+1\right)}{6} \\ & =\frac{n(n+1)\left(n^{2}+5 n+1\right)}{6} \\ & S^{n}=\frac{n(n+1)\left(3 n^{2}+5 n+1\right)}{6} \text { ans. } \end{aligned}$
Q.19)	Find the sum $5^{2}+6^{2}+7^{2} \ldots \ldots \ldots . .20^{2}$.
Sol.19)	$\begin{aligned} & \text { Let } S=5^{2}+6^{2}+7^{2} \ldots2^{2} . \\ &=\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2} \ldots \ldots \ldots . .20^{2}\right)-\left(1^{2}+2^{2}+3^{2}+4^{2}\right) \\ &= S=\left[\frac{n(n+1)(2 n+1)}{6}\right]-\left[\frac{n(n+1)(2 n+1)}{6}\right] \\ & \text { Here, put } n=20 \\ &= S=\left[\frac{20(20+1)(40+1)}{6}\right]-\left[\frac{4(4+1)(8+1)}{6}\right] \\ &= S=\frac{20(21)(41)}{6}-\frac{4(5)(9)}{6} \\ &= 2870-30=2840 \text { ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

 StudiesToday| Q.20) | Find the sum to n terms $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots n$ terms. |
| :--- | :--- |
| Sol.20) | General term of the series is |
| | $a_{n}=\frac{1}{n(n+1)}$ |
| | Let $S_{n}=\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \ldots . \frac{1}{n(n+1)}$ |
| | $S_{n}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots \ldots . .\left(\frac{1}{n}-\frac{1}{n+1}\right)$ |
| | $S_{n}=\frac{1}{n}-\frac{1}{n+1}$ |
| | $S_{n}=\frac{n+1-1}{n+1}$ |
| $\therefore S_{n}=\frac{n}{n+1}$ ans. | |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

