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 SEQUENCE AND SERIES 
Class XI 

 

Q.1) If 𝑓 is a function satisfying 𝑓(𝑥 + 𝑦) = 𝑓(𝑥). 𝑓(𝑦) such that 𝑓(1) = 3 and ∑ 𝑓(𝑥)𝑛
𝑥=1 =

120. Find value of 𝑛. 
 

Sol.1) We have, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥)𝑓(𝑦) 
𝑓(1) = 3 

∑ 𝑓(𝑥)

𝑛

𝑥=1

= 120 

Now ∑ 𝑓(𝑥)𝑛
𝑥=1 = 𝑓(1) + 𝑓(2) + 𝑓(3) +………..𝑛 terms= 120 

Now 𝑓(2) = 𝑓(1 + 1) = 𝑓(1). 𝑓(1) = (3)(3) = 9 
𝑓(3) = 𝑓(1 + 2) = 𝑓(1). 𝑓(2) = (3)(9) = 27 
𝑓(4) = 𝑓(1 + 3) = 𝑓(1). 𝑓(3) = (3)(27) = 81 
∴ series becomes  
3 + 9 + 27 + 81 +………..𝑛 𝑡𝑒𝑟𝑚𝑠 = 120 
Clearly it is a G.P.  with 𝑎 = 3 & 𝑟 = 3 

3 [
3𝑛−1 − 1

3 − 1
] = 120 

⇒ 3
(3𝑛−1)

2
= 120 

⇒ 3𝑛 − 1 =
2×120

3
 

⇒ 3𝑛 − 1 = 80 
⇒ 3𝑛 = 81 
⇒ 3𝑛 = 34 
⇒ 𝑛 = 4 ans. 

 

Q.2) 
If 𝑎, 𝑏, 𝑐 are in G.P. & 𝑎

1

𝑥 = 𝑏
1

𝑦 = 𝑐
1

𝑧. Prove that 𝑥, 𝑦, 𝑧 are in A.P. 
 

Sol.2) Given: 𝑎, 𝑏, 𝑐 are in G.P. 
⇒ 𝑏2 = 𝑎𝑐 

Given: 𝑎
1

𝑥 = 𝑏
1

𝑦 = 𝑐
1

𝑧 

Let 𝑎
1

𝑥 = 𝑏
1

𝑦 = 𝑐
1

𝑧 = 𝑘 

⇒ 𝑎
1

𝑥 = 𝑘 
⇒ 𝑎 = 𝑘𝑥 

⇒ 𝑏
1

𝑦 = 𝑘 
⇒ 𝑏 = 𝑘𝑦 

⇒ 𝑐
1

𝑧 = 𝑘 
⇒ 𝑐 = 𝑘𝑧 

We have, 𝑏2 = 𝑎𝑐 
⇒ (𝑘𝑦)2 = (𝑘𝑥). (𝑘𝑧) 
⇒ 𝑘2𝑦 = 𝑘𝑥+𝑧 
⇒ 2𝑦 = 𝑥 + 𝑧 
∴ 𝑥, 𝑦, 𝑧 are in G.P. ans. 

 

Q.3) Find the value of 𝑛 so that 
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛  is the G.M. between 𝑎 and 𝑏.  

Sol.3) We have, 
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛 = 𝐺. 𝑀. = √𝑎𝑏 

⇒ 
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛 = 𝑎
1

2. 𝑏
1

2 

⇒ 𝑎𝑛+1 + 𝑏𝑛+1 = 𝑎
1

2. 𝑏
1

2(𝑎𝑛 + 𝑏𝑛) 

⇒ 𝑎𝑛+1 + 𝑏𝑛+1 = 𝑎𝑛+
1

2. 𝑏
1

2 + 𝑏𝑛+
1

2. 𝑎
1

2 

⇒ 𝑎𝑛+1 − 𝑎𝑛+
1

2. 𝑏
1

2 = 𝑏𝑛+
1

2. 𝑎
1

2 − 𝑏𝑛+
1

2 
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⇒ 𝑎𝑛+
1

2 (𝑎
1

2 − 𝑏
1

2) − 𝑏𝑛+
1

2 (𝑎
1

2 − 𝑏
1

2) 

⇒ 𝑎𝑛+
1

2 = 𝑏𝑛+
1

2 

⇒ (
𝑎

𝑏
)

𝑛+
1

2
= 1 

⇒ (
𝑎

𝑏
)

𝑛+
1

2
= (

𝑎

𝑏
)

0
 

⇒ 𝑛 +
1

2
= 0 

⇒ 𝑛 =
−1

2
 ans. 

Q.4) Insert three numbers between 3 and 243 so that the resulting sequence is an G.P.  

Sol.4) Here, 𝑎 = 3 , 𝑏 = 243 𝑎𝑛𝑑 𝑛 = 3 
Let G.M.S. are 𝐺1, 𝐺2, 𝐺3 

⇒ 𝑟 = (
𝑏

𝑎
)

1

𝑛+1
= (

243

3
)

1

3+1
= (81)

1

4 = 3 

∴ 𝑟 = 3 
Now, 𝐺1 = 𝑎𝑟1 = (3)(3) = 9 
𝐺2 = 𝑎𝑟2 = (3)(9) = 27 
𝐺3 = 𝑎𝑟3 = (3)(27) = 81 
∴ required no.s are 3, 27, 81 ans. 

 

Q.5) If the first and the 𝑛𝑡ℎ term of a G.P. are 𝑎 𝑎𝑛𝑑 𝑏 respectively and if 𝑃 is the product of 𝑛 
terms. 
Prove that 𝑃2 = (𝑎𝑏)𝑛. 

 

Sol.5) Given, 𝑎1 = 𝑎 
⇒ 𝑎𝑛 = 𝑏 
⇒ 𝑎𝑟𝑛−1 = 𝑏 

⇒ 𝑟𝑛−1 =
𝑏

𝑎
 

⇒ 𝑟 = (
𝑏

𝑎
)

1

𝑛−1
 

Now, 𝑃 → product of 𝑛 terms 
⇒ 𝑃 = 𝑎. 𝑎𝑟. 𝑎𝑟2. 𝑎𝑟3. … … … . . 𝑎𝑟𝑛−1 

⇒ 𝑃 = 𝑎𝑛. 𝑟1+2+3……..(𝑛−1) 

⇒ 𝑃 = 𝑎𝑛. 𝑟
𝑛(𝑛−1)

2  
Putting the value of 𝑟 

⇒ 𝑃 = 𝑎𝑛 [(
𝑏

𝑎
)

1

𝑛−1
]

𝑛(𝑛−1)

2

 

⇒ 𝑃 = 𝑎𝑛 (
𝑏

𝑎
)

𝑛

2
 

⇒ 𝑃 = 𝑎𝑛.
𝑏

𝑛
2

𝑎
𝑛
2

 

⇒ 𝑃 = 𝑎𝑛−
𝑛

2 . 𝑏
𝑛

2  

⇒ 𝑃 = 𝑎
𝑛

2 . 𝑏
𝑛

2  

⇒ 𝑃 = (𝑎𝑏)
𝑛

2  
Squaring 
𝑃2 = (𝑎𝑏)𝑛 (proved) 

 

Q.6) If the 𝑝𝑡ℎ , 𝑞𝑡ℎ 𝑎𝑛𝑑 𝑟𝑡ℎ terms of a G.P. are 𝑎, 𝑏 𝑎𝑛𝑑 𝑐 respectively.  
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Prove that 𝑎𝑞−𝑟 . 𝑏𝑟−𝑝. 𝑐𝑝−𝑞 = 1 

Sol.6) Let 1st term = 𝐴 
Common ratio = 𝑅 
Given, 𝑎𝑝 = 𝑎 = 𝐴𝑅𝑝−1 

𝑎𝑞 = 𝑏 = 𝐴𝑅𝑞−1 

𝑎𝑟 = 𝑐 = 𝐴𝑅𝑟−1 
Taking L.H.S 𝑎𝑞−𝑟 . 𝑏𝑟−𝑝. 𝑐𝑝−𝑞 
Substitute the value of 𝑎, 𝑏, 𝑐 in L.H.S.  
= [𝐴𝑅𝑝−1]𝑞−𝑟 . [𝐴𝑅𝑞−1]𝑟−𝑝. [𝐴𝑅𝑟−1]𝑝−𝑞 

= 𝐴𝑞−𝑟 . 𝑅(𝑝−1)(𝑞−𝑟). 𝐴𝑟−𝑝. 𝑅(𝑞−1)(𝑟−𝑝). 𝐴𝑝−𝑞 . 𝑅(𝑟−1)(𝑝−𝑞) 
= 𝐴𝑞−𝑟+𝑟−𝑝+𝑝−𝑞 . 𝑅𝑝𝑞−𝑝𝑟−𝑞+𝑟+𝑞𝑟−𝑝𝑞−𝑟+𝑝+𝑟𝑞−𝑟𝑞−𝑝+𝑞 
= 𝐴0. 𝑅0 
= (1)(1) 
= 1 R.H.S. (proved) 

 

Q.7) If 𝐴 and 𝐺 be A.M. and G.M. respectively between two +ve numbers. 

Prove that he numbers are 𝐴 ± √(𝐴 + 𝐺)(𝐴 − 𝐺). 

 

Sol.7) Let the numbers are 𝑎 and 𝑏 

Then 𝐴 =
𝑎+𝑏

2
 𝑎𝑛𝑑 𝐺 = √𝑎𝑏 

Consider, 𝐴 + √(𝐴 + 𝐺)(𝐴 − 𝐺) 

= 𝐴 + √𝐴2 − 𝐺2 
Put value of 𝐴 & 𝐺 

= 
𝑎+𝑏

2
+ √(

𝑎+𝑏

2
)

2
− (√𝑎𝑏)

2
 

= 
𝑎+𝑏

2
+ √

𝑎2+𝑏2+2𝑎𝑏

4
− 𝑎𝑏 

= 
𝑎+𝑏

2
+ √

𝑎2+𝑏2−2𝑎𝑏

4
 

= 
𝑎+𝑏

2
+ √(

𝑎−𝑏

2
)

2
 

= 
𝑎+𝑏

2
+

𝑎−𝑏

2
 

= 2𝑎 

∴ 𝐴 + √(𝐴 + 𝐺)(𝐴 − 𝐺) = 𝑎 

Similarly, 𝐴 + √(𝐴 + 𝐺)(𝐴 − 𝐺) = 𝑏 

∴ The numbers are 𝐴 ± √(𝐴 + 𝐺)(𝐴 − 𝐺) ans. 

 

Q.8) Let 𝑠 be the sum, 𝑃 be the product and 𝑅 be the sum of reciprocal of 𝑛 terms in G.P. 
Prove that 𝑃2𝑅𝑛 = 𝑆𝑛. 

 

Sol.8) 𝑆 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 +………𝑎𝑟𝑛−1 

⇒ 𝑆 = 𝑎 (
𝑟𝑛−1

𝑟−1
) ; 𝑟 > 1 

𝑃 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 +………𝑎𝑟𝑛−1 

𝑃 = 𝑎𝑛 + 𝑟1+2+⋯….(𝑛−1) 

𝑃 = 𝑎𝑛. 𝑟
𝑛(𝑛−1)

2  

𝑅 =
1

𝑎
+

1

𝑎𝑟
+

1

𝑎𝑟2 +………
1

𝑎𝑟𝑛−1 

It is also a G.P.  with 1st term 
1

𝑎
  and common ratio 

1

𝑟
  (∵ r > 1 ∴

1

𝑟
< 1) 
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∴ R =
1

𝑎
[
1 −

1
𝑟𝑛

1 −
1
𝑟

] 

𝑅 =
1

𝑎
[
𝑟𝑛 − 1

𝑟 − 1
] .

𝑟

𝑟𝑛
 

Taking L.H.S. 𝑃2. 𝑅𝑛 
Put value of 𝑃 and 𝑅 in L.H.S. 

∴ L.H.S [𝑎𝑛. 𝑟
𝑛(𝑛−1)

2 ] [
1

𝑎
(

𝑟𝑛−1

𝑟−1
) .

𝑟

𝑟𝑛]
𝑛

 

= 𝑎2𝑛. 𝑟𝑛(𝑛−1).
1

𝑎𝑛 (
𝑟𝑛−1

𝑟−1
)

𝑛

.
𝑟

𝑟𝑛2 

= 𝑎2𝑛−𝑛. 𝑟𝑛2−𝑛+𝑛−𝑛2
. (

𝑟𝑛−1

𝑟−1
)

𝑛

 

= 𝑎𝑛. 𝑟0. (
𝑟𝑛−1

𝑟−1
)

𝑛

 

= 𝑎𝑛. (
𝑟𝑛−1

𝑟−1
)

𝑛

 

= [𝑎. (
𝑟𝑛−1

𝑟−1
)

𝑛

] 

= 𝑆𝑛 RHS ans. 

Q.9) Show that the ratio of the sum of 1st 𝑛 terms of a G.P. to the sum of terms from 

(𝑛 + 1)𝑡ℎ to (2𝑛)𝑡ℎ term is 
1

𝑟𝑛. 

 

Sol.9) Here G.P. consist of (2𝑛) no. of terms   
𝑎1  𝑎𝑛 𝑎𝑛+1 𝑎2𝑛 

   
1st terms = 𝑎1 = 𝑎 
Ratio = 𝑟 
Terms = 𝑛 
Sum= 𝑆𝑛 

1st term = 𝑎𝑛+1 = 𝑎𝑟𝑛 
Ratio= 𝑟 
Terms= 𝑛 
Sum= 𝑆′

𝑛 
𝑆𝑛 →sum of 1st 𝑛 terms 

𝑆′
𝑛 →sym of terms from (𝑛 + 1)𝑡ℎ to (2𝑛) terms  

𝑆𝑛 = 𝑎 (
𝑟𝑛 − 1

𝑟 − 1
) 

𝑆′
𝑛 = 𝑎𝑟𝑛 [

𝑟𝑛 − 1

𝑟 − 1
] 

Now, 
𝑆𝑛

𝑆′
𝑛

=
𝑎(

𝑟𝑛−1

𝑟−1
)

𝑎𝑟𝑛(
𝑟𝑛−1

𝑟−1
)

=
1

𝑟𝑛 (proved) 

 

Q.10) If 𝑎, 𝑏, 𝑐, 𝑑 𝑎𝑛𝑑 𝑝 are real numbers such that (𝑎2 + 𝑏2 + 𝑐2)𝑝2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)𝑝 +
(𝑏2 + 𝑐2 + 𝑑2) ≤ 0 then show that 𝑎, 𝑏, 𝑐 & 𝑑 are in G.P. 

 

Sol.10) To show that, 𝑎, 𝑏, 𝑐 & 𝑑 are in G.P. 

We have to prove 
𝑏

𝑎
=

𝑐

𝑏
=

𝑑

𝑐
 

Given, (𝑎2 + 𝑏2 + 𝑐2)𝑝2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑)𝑝 + (𝑏2 + 𝑐2 + 𝑑2) ≤ 0 
⇒ 𝑎2𝑝2 + 𝑏2𝑝2 + 𝑐2𝑝2 − 2𝑎𝑏𝑝 − 2𝑏𝑐𝑝 − 2𝑐𝑑𝑝 + 𝑏2 + 𝑐2 + 𝑑2 ≤ 0 
⇒ (𝑎2𝑝2 − 2𝑎𝑏𝑝 + 𝑏2) + (𝑏2𝑝2 − 2𝑏𝑐𝑝 + 𝑐2) + (𝑐2𝑝2 − 2𝑐𝑑𝑝 + 𝑑2) ≤ 0 
⇒ (𝑎𝑝 − 𝑏)2 + (𝑏𝑝 − 𝑐)2 + (𝑐𝑝 − 𝑑)2 ≤ 0 
But (𝑎𝑝 − 𝑏)2 + (𝑏𝑝 − 𝑐)2 + (𝑐𝑝 − 𝑑)2 cannot less than 0 {∵
sum of square can never be negative} 
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∴ (𝑎𝑝 − 𝑏)2 + (𝑏𝑝 − 𝑐)2 + (𝑐𝑝 − 𝑑)2 = 0 
This is possible only when  

𝑎𝑝 − 𝑏 = 0 
𝑎𝑝 = 𝑏 
𝑏

𝑎
= 𝑝 

𝑏𝑝 − 𝑐 = 0 
𝑏𝑝 = 𝑐 
𝑐

𝑏
= 𝑝 

𝑐𝑝 − 𝑑 = 0 
𝑐𝑝 = 𝑑 
𝑑

𝑐
= 𝑝 

⇒ 
𝑏

𝑎
=

𝑐

𝑏
=

𝑑

𝑐
 

⇒ 𝑎, 𝑏, 𝑐, 𝑑 are in G.P. ans. 

Q.11) If 𝑝, 𝑞, 𝑟 are in G.P. and the equations 𝑝𝑥2 + 2𝑞𝑥 + 𝑟 = 0 and 𝑑𝑥2 + 2𝑒𝑥 + 𝑓 = 0 have 

a common root, then show that 
𝑑

𝑝
,

𝑒

𝑞
,

𝑓

𝑟
 are in A.P. 

 

Sol.11) Given, 𝑝, 𝑞, 𝑟 are in G.P. 
∴  𝑞2 = 𝑝𝑟 

To prove, 
𝑑

𝑝
,

𝑒

𝑞
,

𝑓

𝑟
 are in G.P. 

i.e., 
2𝑒

𝑞
=

𝑑

𝑝
+

𝑓

𝑟
 

consider the equation, 𝑝𝑥2 + 2𝑞𝑥 + 𝑟 = 0 

by quadratic formula, 𝑥 =
−2𝑞±√4𝑞2−4𝑝𝑟

2𝑝
 

⇒ 𝑥 =
−2𝑞±√4𝑝𝑟−4𝑝𝑟

2𝑝
 ………….. {∵  q2 = pr} 

⇒ 𝑥 =
−2𝑞

2𝑝
 

⇒ 𝑥 =
−𝑞

𝑝
 

This is also the root of the equation 𝑑𝑥2 + 2𝑒𝑥 + 𝑓 = 0  

∴ 𝑑 (
−𝑞

𝑝
)

2
+ 2𝑒 (

−𝑞

𝑝
) + 𝑓 = 0 

⇒ 
𝑑𝑞2

𝑝2 −
2𝑒𝑞

𝑝
+ 𝑓 = 0 

⇒ 
𝑑𝑝𝑟

𝑝2 −
2𝑒𝑞

𝑝
+ 𝑓 = 0………….. {∵  q2 = pr} 

⇒ 
𝑑𝑟

𝑝
−

2𝑒𝑞

𝑝
+ 𝑓 = 0 

⇒ 𝑑𝑟 − 2𝑒𝑞 + 𝑓𝑝 = 0 
⇒ 2𝑒𝑞 = 𝑑𝑟 + 𝑓𝑝 
Divide by q2 

⇒ 
2𝑒

𝑞
=

𝑑𝑟

q2 +
𝑓𝑝

q2 

⇒ 
2𝑒

𝑞
=

𝑑𝑟

pr
+

𝑓𝑝

pr
 

⇒ 
2𝑒

𝑞
=

𝑑

p
+

𝑓

r
 

∴  
𝑑

p
,

𝑒

𝑞
,

𝑓

𝑟
  are in A.P. (proved) 

 

Q.12) Fid the sum of the products of the corresponding terms of the sequences 2,4,8,16,32 

and 128,32,8,2,
1

2
. 

 

Sol.12) 1st sequence 2, 4, 8, 16, 32 

2nd sequence 128, 32, 8, 2,
1

2
 

New sequence (products of corresponding terms) 
= 256, 128, 64, 32, 16 

Now, 
𝑎2

𝑎1
=

128

256
=

1

2
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𝑎3

𝑎2
=

64

128
=

1

2
 

Clearly it is a G.P. with 𝑎 = 256, 𝑟 =
1

2
  and no. of term = 5 

∴ sum = 𝑆𝑛 = 𝑎 (
1−𝑟𝑛

1−𝑟
) 

= 𝑆5 = 256 (
1−(

1

2
)

5

1−
1

2

) 

= 256 (
1−

1

32
1

2

) 

= 2 × 256 (
31

32
) 

= 16 × 31 
= 496 ans. 

Q.13) Find four numbers forming a G.P. in which the third term is greater than the first term by 
9 & the second term is greater than fourth term by 18. 

 

Sol.13) Let the four numbers are 𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3 
We have, 𝑎3 = 𝑎1 + 9 

⇒ 𝑎𝑟2 = 𝑎 + 9 
⇒ 𝑎𝑟2 − 𝑎 = 9 
⇒ 𝑎( 𝑟2 − 1) = 9 …………… (i) 

And 𝑎2 = 𝑎4 + 18 
⇒ 𝑎𝑟 = 𝑎𝑟3 + 18 
⇒ 𝑎𝑟 − 𝑎𝑟3 = 18 
⇒ 𝑎𝑟( 𝑟2 − 1) = 18  
⇒ −𝑎𝑟( 𝑟2 − 1) = 18 …………… (ii) 

Divide (ii) and (i) 
−𝑎𝑟( 𝑟2 − 1)

𝑎( 𝑟2 − 1)
=

18

9
 

∴  −𝑟 = 2 
⇒ 𝑟 = −2 
Put in (i) 
9(4 − 1) = 9 
⇒ 3𝑎 = 9 
⇒ 𝑎 = 3 
∴ the no.s are 3, −6, 12, 24 ans. 

 

Q.14) Evaluate ∑ (2 + 3𝑘)11
𝑘=1   

Sol.14) ∑ (2 + 3𝑘)11
𝑘=1 = (2 + 31) + (2 + 32) + (2 + 33) +….....(2 + 311) 

= (2 + 2 + 2 + ⋯ … .11 𝑡𝑒𝑟𝑚𝑠) + (31 + 32 + 33 … … … 311) 
G.P. 𝑎 = 3, 𝑟 = 3, 𝑛 = 11 

= 22 + 3 (
311−1

3−1
) 

= 22 +
312−3

2
 

= 
44+312−3

2
 

= 
41+312

2
 ans. 

 

Q.15) If 𝑝𝑡ℎ , 𝑞𝑡ℎ, 𝑟𝑡ℎ and 𝑠𝑡ℎ terms of an A.P. are in G.P., then show that (𝑝 − 𝑞), (𝑞 − 𝑟), (𝑟 − 𝑠) 
are also in G.P. 
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Sol.15) ⇒ 𝑎𝑝 = 𝑎 + (𝑝 − 1)𝑑 …………. {∵ 𝑎𝑝, 𝑎𝑞 , 𝑎𝑟 , 𝑎𝑠terms of an A. P. } 

⇒ 𝑎𝑞 = 𝑎 + (𝑞 − 1)𝑑 

⇒ 𝑎𝑟 =  𝑎 + (𝑟 − 1)𝑑 
⇒ 𝑎𝑠 = 𝑎 + (𝑠 − 1)𝑑 
Given that 𝑎𝑝, 𝑎𝑞 , 𝑎𝑟 , 𝑎𝑠 are in G.P. 

∴  
𝑎𝑞

𝑎𝑝
=

𝑎𝑟

𝑎𝑞
=

𝑎𝑠

𝑎𝑟
 ………… (i) 

 Consider 
𝑎𝑞

𝑎𝑝
=

𝑎𝑟

𝑎𝑞
 

⇒ 
𝑎𝑞

𝑎𝑝
=

𝑎𝑟

𝑎𝑞
=

𝑎𝑞−𝑎𝑟

𝑎𝑝−𝑎𝑞
 …….. {𝑖𝑓 

𝑎

𝑏
=

𝑐

𝑑
 𝑡ℎ𝑒𝑛 

𝑎

𝑏
=

𝑐

𝑑
=

𝑎−𝑐

𝑏−𝑎
} 

⇒ 
𝑎𝑞

𝑎𝑝
=

𝑎𝑟

𝑎𝑞
=

[𝑎+(𝑞−1)𝑑]−[𝑎+(𝑟−1)𝑑]

[𝑎+(𝑝−1)𝑑]−[𝑎+(𝑞−1)𝑑]
 

⇒ 
𝑑(𝑞−1)−𝑑(𝑟−1)𝑑

𝑑(𝑝−1)−𝑑(𝑞−1)𝑑
 

∴
𝑎𝑞

𝑎𝑝
=

𝑎𝑟

𝑎𝑞
=

𝑞−𝑟

𝑝−𝑞
 …….. (ii) 

Now, consider 
𝑎𝑟

𝑎𝑞
=

𝑎𝑠

𝑎𝑟
=

𝑎𝑟−𝑎𝑠

𝑎𝑞−𝑎𝑟
 

⇒  
𝑎𝑟

𝑎𝑞
=

𝑎𝑠

𝑎𝑟
=

[𝑎+(𝑟−1)𝑑]−[𝑎+(𝑠−1)𝑑]

[𝑎+(𝑞−1)𝑑]−[𝑎+(𝑟−1)𝑑]
 

⇒ 
𝑑(𝑟−1−𝑠+1)

𝑑(𝑞−1−𝑟+1)
 

∴
𝑎𝑟

𝑎𝑞
=

𝑎𝑠

𝑎𝑟
=

𝑟−𝑠

𝑞−𝑟
 …….. (iii) 

From (i), (ii) & (iii) 

⇒ 
𝑞−𝑟

𝑝−𝑞
=

𝑟−𝑞

𝑞−𝑟
 

⇒ (𝑞 − 𝑟)2 = (𝑝 − 𝑞)(𝑟 − 𝑠) 
⇒ (𝑝 − 𝑞), (𝑞 − 𝑟), (𝑟 − 𝑠) are in G.P. 

 

Q.16) If the 4th , 10th  and 16th term of a G.P. are 𝑥, 𝑦, 𝑧 respectively. Prove that 𝑥, 𝑦, 𝑧 are in 
G.P. 

 

Sol.16) ⇒ 𝑎4 = 𝑥 ⇒ 𝑎𝑟3 = 𝑥 
⇒ 𝑎10 = 𝑦 ⇒ 𝑎𝑟9 = 𝑦 
⇒ 𝑎16 = 𝑧 ⇒ 𝑎𝑟15 = 𝑧 
To prove, 𝑥, 𝑦, 𝑧 are in G.P. 
i.e., to prove 𝑦2 = 𝑥𝑧 
L.H.S. 𝑦2 = (𝑎𝑟9)2 = 𝑎2𝑟18 

R.H.S. 𝑥𝑧 = (𝑎𝑟3)(𝑎𝑟15) = 𝑎2𝑟18 
Clearly 𝑦2 = 𝑥𝑧 
∴  𝑥, 𝑦, 𝑧 are in G.P. 
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