	SEQUENCE AND SERIES Class XI				
Q.1)	If f is a function satisfying $f(x + y) = f(x)$. $f(y)$ such that $f(1) = 3$ and $\sum_{x=1}^{n} f(x) = 1$				
Sol.1)	120. Find value of <i>n</i> . We have, $f(x + y) = f(x)f(y)$				
,	f(1) = 3				
	$\sum_{n=1}^{n} f(x) = 120$				
	x=1				
	Now $\sum_{x=1}^{n} f(x) = f(1) + f(2) + f(3) + \dots + n$ terms = 120 Now $f(2) = f(1+1) = f(1)$. $f(1) = (3)(3) = 9$				
	$f(3) = f(1+2) = f(1) \cdot f(2) = (3)(9) = 27$				
	$f(4) = f(1+3) = f(1) \cdot f(3) = (3)(27) = 81$				
	$\therefore \text{ series becomes} \\ 3 + 9 + 27 + 81 + \dots n \text{ terms} = 120$				
	$S + 9 + 27 + 61 + \dots + 120$ Clearly it is a G.P. with $a = 3 \& r = 3$				
	$3\left[\frac{3^{n-1}-1}{3-1}\right] = 120$				
	$\Rightarrow 3\frac{(3^n-1)}{2} = 120$				
	$\Rightarrow 3^n - 1 = \frac{2 \times 120}{3}$				
	$\Rightarrow 3^n - 1 = 80$				
	$ \Rightarrow 3^n = 81 \Rightarrow 3^n = 3^4 $				
	$\Rightarrow 3^{\circ} = 3^{\circ}$ $\Rightarrow n = 4$ ans.				
Q.2)	If a, b, c are in G.P. & $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$. Prove that x, y, z are in A.P.				
Sol.2)	Given: <i>a</i> , <i>b</i> , <i>c</i> are in G.P.				
	$\Rightarrow b^2 = ac$				
	Given: $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$				
	Let $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}} = k$				
	$\Rightarrow a^{\frac{1}{x}} = k \qquad \Rightarrow b^{\frac{1}{y}} = k \qquad \Rightarrow c^{\frac{1}{z}} = k$				
	$\Rightarrow a = k^{x} \qquad \Rightarrow b = k^{y} \qquad \Rightarrow c = k^{z}$ We have, $b^{2} = ac$				
	$\Rightarrow (k^{y})^{2} = (k^{x}).(k^{z})$				
	$\Rightarrow k^{2y} = k^{x+z}$				
	$\Rightarrow 2y = x + z$				
Q.3)	$\therefore x, y, z$ are in G.P. ans.Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ is the G.M. between a and b .				
Sol.3)	We have, $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}} = G.M. = \sqrt{ab}$				
- 1					
	$\Rightarrow \frac{a^{n+1} + b^{n+1}}{a^n + b^n} = a^{\frac{1}{2}} \cdot b^{\frac{1}{2}}$				
	$\Rightarrow a^{n+1} + b^{n+1} = a^{\frac{1}{2}} \cdot b^{\frac{1}{2}} (a^n + b^n)$				
	$\Rightarrow a^{n+1} + b^{n+1} = a^{n+\frac{1}{2}} \cdot b^{\frac{1}{2}} + b^{n+\frac{1}{2}} \cdot a^{\frac{1}{2}}$				
	$\Rightarrow a^{n+1} - a^{n+\frac{1}{2}} \cdot b^{\frac{1}{2}} = b^{n+\frac{1}{2}} \cdot a^{\frac{1}{2}} - b^{n+\frac{1}{2}}$				

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\Rightarrow a^{n+\frac{1}{2}} \left(a^{\frac{1}{2}} - b^{\frac{1}{2}} \right) - b^{n+\frac{1}{2}} \left(a^{\frac{1}{2}} - b^{\frac{1}{2}} \right)$			
	$\Rightarrow a^{n+\frac{1}{2}} = b^{n+\frac{1}{2}}$			
	$\Rightarrow \left(\frac{a}{b}\right)^{n+\frac{1}{2}} = 1$			
	$\Rightarrow \left(\frac{a}{b}\right)^{n+\frac{1}{2}} = \left(\frac{a}{b}\right)^{0}$			
	$\Rightarrow n + \frac{1}{2} = 0$			
	$\Rightarrow n = \frac{2}{-1}$ ans.			
Q.4)	Insert three numbers between 3 and 243 so that the resulting sequence is an G.P.			
Sol.4)				
	Let G.M.S. are G_1, G_2, G_3			
	$\Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}} = \left(\frac{243}{3}\right)^{\frac{1}{3+1}} = (81)^{\frac{1}{4}} = 3$			
	$\therefore r = 3$ Now, $G_1 = ar^1 = (3)(3) = 9$			
	Now, $G_1 = ar^2 = (3)(3) = 9$ $G_2 = ar^2 = (3)(9) = 27$			
	$G_2 = ar^2 = (3)(9) = 27$ $G_3 = ar^3 = (3)(27) = 81$			
	\therefore required no.s are 3, 27, 81 ans.			
Q.5)	If the first and the n^{th} term of a G.P. are a and b respectively and if P is the product of n			
	terms.			
	Prove that $P^2 = (ab)^n$.			
Sol.5)	Given, $a_1 = a$			
	$\Rightarrow a_n = b$			
	$\Rightarrow ar^{n-1} = b$			
	$\Rightarrow r^{n-1} = -a$			
	$\Rightarrow r^{n-1} = \frac{b}{a}$ $\Rightarrow r = \left(\frac{b}{a}\right)^{\frac{1}{n-1}}$			
	Now, $P \rightarrow \text{product of } n \text{ terms}$			
	$\Rightarrow P = a. ar. ar^2. ar^3. \dots ar^{n-1}$			
	$\Rightarrow P = a^n \cdot r^{1+2+3\dots(n-1)}$			
	$\Rightarrow P = a^n \cdot r^{\frac{n(n-1)}{2}}$			
	$\Rightarrow P = a^n \cdot r^{-2}$ Putting the value of r			
	n(n-1)			
	$\Rightarrow P = a^n \left[\left(\frac{b}{a}\right)^{\frac{1}{n-1}} \right]^{\frac{n(n-1)}{2}}$			
	$\Rightarrow P = a^n \left(\frac{b}{a}\right)^{\frac{n}{2}}$ $\Rightarrow P = a^n \cdot \frac{b^{\frac{n}{2}}}{a^{\frac{n}{2}}}$ $\Rightarrow P = a^{n-\frac{n}{2}} \cdot b^{\frac{n}{2}}$			
	$\Rightarrow P = a^n \cdot \frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}$			
	$\Rightarrow P = a^{n-\frac{n}{2}} b^{\frac{n}{2}}$	1		
	$\Rightarrow P = a^{\frac{n}{2}} b^{\frac{n}{2}}$	1		
	$\Rightarrow P = (ab)^{\frac{n}{2}}$	I		
	Squaring			
	$P^2 = (ab)^n \text{ (proved)}$			
Q.6)	If the p^{th} , q^{th} and r^{th} terms of a G.P. are a, b and c respectively.			

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	Prove that a^{q-r} . b^{r-p} . $c^{p-q} = 1$	
Sol.6)	Let 1^{st} term = A	
	Common ratio = R	
	Given, $a_p = a = AR^{p-1}$	
	$a_q = b = AR^{q-1}$	
	$a_r = c = AR^{r-1}$	
	Taking L.H.S $a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$	
	Substitute the value of <i>a</i> , <i>b</i> , <i>c</i> in L.H.S.	
	$= [AR^{p-1}]^{q-r} \cdot [AR^{q-1}]^{r-p} \cdot [AR^{r-1}]^{p-q}$	
	$= A^{q-r} \cdot R^{(p-1)(q-r)} \cdot A^{r-p} \cdot R^{(q-1)(r-p)} \cdot A^{p-q} \cdot R^{(r-1)(p-q)}$	
	$= A^{q-r+r-p+p-q} \cdot R^{pq-pr-q+r+qr-pq-r+p+rq-rq-p+q}$	
	$= A^0. R^0$	
	=(1)(1)	
	= 1 R.H.S. (proved)	
Q.7)	If A and G be A.M. and G.M. respectively between two +ve numbers.	
	Prove that he numbers are $A \pm \sqrt{(A+G)(A-G)}$.	
Sol.7)	Let the numbers are a and b	
	Then $A = \frac{a+b}{2}$ and $G = \sqrt{ab}$	
	Consider, $A + \sqrt{(A+G)(A-G)}$	
	$=A + \sqrt{A^2 - G^2}$	
	Put value of A & G	
	$=\frac{a+b}{2} + \sqrt{\left(\frac{a+b}{2}\right)^2 - \left(\sqrt{ab}\right)^2}$	
	$=\frac{a+b}{2}+\sqrt{\frac{a^2+b^2+2ab}{4}-ab}$	
	$=\frac{a+b}{2}+\sqrt{\frac{a^2+b^2-2ab}{4}}$	
	$=\frac{a+b}{2} + \sqrt{\left(\frac{a-b}{2}\right)^2}$	
	$=\frac{a+b}{2} + \frac{a-b}{2}$	
	$\begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix} = 2a$	
	$\therefore A + \sqrt{(A+G)(A-G)} = a$	
	Similarly, $A + \sqrt{(A+G)(A-G)} = b$	
	\therefore The numbers are $A \pm \sqrt{(A+G)(A-G)}$ ans.	
Q.8)	Let s be the sum, P be the product and R be the sum of reciprocal of n terms in G.P.	
Sol.8)	Prove that $P^2R^n = S^n$. $S = a + ar + ar^2 + \dots ar^{n-1}$	-
501.87	$\Rightarrow S = a\left(\frac{r^{n}-1}{r-1}\right); r > 1$	
	$P = a + ar + ar^{2} + \dots ar^{n-1}$	
	$P = a^{n} + r^{1+2+\dots(n-1)}$	
	$P = a^{n} r^{\frac{n(n-1)}{2}}$	
	$P = a^{n} \cdot r^{2} = 2$ $R = \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^{2}} + \dots \frac{1}{ar^{n-1}}$	
	It is also a G.P. with 1 st term $\frac{1}{a}$ and common ratio $\frac{1}{r}$ (:: r > 1 :: $\frac{1}{r} < 1$)	
	$\frac{1}{r} \left(\frac{1}{r} \right) \left(\frac{1}{r} \right)$	

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$ \therefore R = \frac{1}{a} \left[\frac{1 - \frac{1}{r^n}}{1 - \frac{1}{r}} \right] R = \frac{1}{a} \left[\frac{r^n - 1}{r - 1} \right] \cdot \frac{r}{r^n} Taking L.H.S. P^2. R^n Put value of P and R in L.H.S. \therefore L.H.S \left[a^n \cdot r^{\frac{n(n-1)}{2}} \right] \left[\frac{1}{a} \left(\frac{r^{n-1}}{r-1} \right) \\= a^{2n} \cdot r^{n(n-1)} \cdot \frac{1}{a^n} \left(\frac{r^{n-1}}{r-1} \right)^n \cdot \frac{r}{r^{n^2}} \\= a^{2n-n} \cdot r^{n^2 - n + n - n^2} \cdot \left(\frac{r^{n-1}}{r-1} \right)^n \\= a^n \cdot r^0 \cdot \left(\frac{r^{n-1}}{r-1} \right)^n \\= a^n \cdot \left(\frac{r^{n-1}}{r-1} \right)^n \\= \left[a \cdot \left(\frac{r^{n-1}}{r-1} \right)^n \right] $	2			
	$= S^n$ RHS ans.				
Q.9)		n of $1^{st} n$ terms of a G.P. to the sum of terms from			
	$(n+1)^{th}$ to $(2n)^{th}$ term is $\frac{1}{r^n}$.				
Sol.9)	Here G.P. consist of $(2n)$ no.				
	a_1 a_n a_{n+1}	<i>a</i> _{2n}			
	G.P.				
	$1^{\text{st}} \text{ terms} = a_1 = a$	G.P 1^{st} term $= a_{n+1} = ar^n$			
	Ratio = r	Ratio= r			
	Terms = n	Terms = n			
	$Sum = S_n$	$Sum = S'_n$			
	$S_n \rightarrow \text{sum of } 1^{\text{st}} n \text{ terms}$	and the second sec			
	$S'_n \rightarrow \text{sym of terms from } (n + 1)$	$(1)^{in}$ to $(2n)$ terms			
	$S_n = a\left(\frac{r^n - 1}{r - 1}\right)$				
	$S'_n = ar^n \left[\frac{r^n - 1}{r - 1} \right]$				
	Now, $\frac{S_n}{S'_n} = \frac{a(\frac{r^n - 1}{r-1})}{ar^n(\frac{r^n - 1}{r-1})} = \frac{1}{r^n}$ (pr	oved)			
Q.10)	If a, b, c, d and p are real numbers such that $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + (b^2 + c^2 + d^2) \le 0$ then show that $a, b, c \& d$ are in G.P.				
Sol.10)	To show that, $a, b, c \& d$ are in		t		
,	We have to prove $\frac{b}{a} = \frac{c}{b} = \frac{d}{c}$				
		$(ab + bc + cd)p + (b^2 + c^2 + d^2) \le 0$			
		$bp - 2bcp - 2cdp + b^2 + c^2 + d^2 \le 0$			
	$\Rightarrow a \ p \ + b \ p \ + c \ p \ - 2abp - 2bcp - 2cap + b \ + c \ + a \ \leq 0$ $\Rightarrow (a^2p^2 - 2abp + b^2) + (b^2p^2 - 2bcp + c^2) + (c^2p^2 - 2cdp + d^2) \leq 0$				
	$\Rightarrow (ap - b)^{2} + (bp - c)^{2} + (cp - d)^{2} \le 0$ But $(ap - b)^{2} + (bp - c)^{2} + (cp - d)^{2}$ cannot less than 0 {:: sum of square can never be negative}				

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$(1)^{2} + (1)^$	1)2 0			
	$\therefore (ap-b)^2 + (bp-c)^2 + (cp-d)^2 = 0$ This is possible only when				
	ap - b = 0	bp - c = 0	cp - d = 0		
	ap = b		cp = d		
	h	bp = c c c b = p	$\frac{d}{d} = p$		
	$\frac{b}{a} = p$	b^{-p}	$\frac{1}{c} = p$		
	$\Rightarrow \frac{b}{a} = \frac{c}{b} = \frac{d}{c}$				
	$\Rightarrow a, b, c, d$ are in G.P. ans.				
Q.11)	If p, q, r are in G.P. and the e	quations $px^2 + 2qx + r =$	0 and $dx^2 + 2ex + f = 0$ have		
	a common root, then show th	hat $\frac{d}{n}, \frac{e}{a}, \frac{f}{r}$ are in A.P.			
Sol.11)	Given, p, q, r are in G.P.	<i>pq1</i>			
,	$\therefore q^2 = pr$				
	To prove, $\frac{d}{p}$, $\frac{e}{q}$, $\frac{f}{r}$ are in G.P.				
	i.e., $\frac{2e}{a} = \frac{d}{n} + \frac{f}{r}$				
	consider the equation, px^2 +	-2qx + r = 0			
	by quadratic formula, $x = \frac{-2}{2}$	$\frac{q\pm\sqrt{4q^2-4pr}}{2m}$			
	$\Rightarrow x = \frac{-2q \pm \sqrt{4pr - 4pr}}{2p} \dots$	-r-			
	$\Rightarrow x = \frac{-2q}{2n}$				
	$\Rightarrow x = \frac{\frac{2p}{-q}}{r}$				
	^p This is also the root of the eq	uation $dx^2 + 2ex + f = 0$			
	$\dot{d} \cdot d\left(\frac{-q}{n}\right)^2 + 2e\left(\frac{-q}{n}\right) + f = 0$)			
	$\Rightarrow \frac{dq^2}{p^2} - \frac{2eq}{p} + f = 0$				
	r r				
	$\Rightarrow \frac{dpr}{p^2} - \frac{2eq}{p} + f = 0 \{ \because q^2 = pr \}$				
	$\Rightarrow \frac{dr}{p} - \frac{2eq}{p} + f = 0$				
	$\Rightarrow dr - 2eq + fp = 0$				
	$\Rightarrow 2eq = dr + fp$ Divide by q ²				
	Divide by q^- , $2e dr$, fp				
	$\Rightarrow \frac{2e}{q} = \frac{dr}{q^2} + \frac{fp}{q^2}$				
	$\Rightarrow \frac{2e}{q} = \frac{dr}{pr} + \frac{fp}{pr}$ $\Rightarrow \frac{2e}{q} = \frac{d}{p} + \frac{f}{r}$				
	$\Rightarrow \frac{2e}{2e} = \frac{d}{d} + \frac{f}{f}$				
	$\therefore \frac{d}{p}, \frac{e}{q}, \frac{f}{r}$ are in A.P. (proved)				
Q.12)	Fid the sum of the products of	of the corresponding terms	of the sequences 2,4,8,16,32		
	and 128,32,8,2, ¹ / ₂ .				
Sol.12)	1 st sequence 2, 4, 8, 16, 32				
	2^{nd} sequence 128, 32, 8, 2, $\frac{1}{2}$				
	New sequence (products of c	orresponding terms)			
	= 256, 128, 64, 32, 16				
	Now, $\frac{a_2}{a_1} = \frac{128}{256} = \frac{1}{2}$				
I					

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

-				
	$\frac{a_3}{a_2} = \frac{64}{128} = \frac{1}{2}$			
	4			
	Clearly it is a G.P. with $a = 256$, $r = \frac{1}{2}$ and no. of term = 5			
	$\therefore \operatorname{sum} = S_n = a\left(\frac{1-r^n}{1-r}\right)$			
	$=S_5 = 256 \left(\frac{1 - \left(\frac{1}{2}\right)^5}{1 - \frac{1}{2}}\right)$			
	$=256\left(\frac{1-\frac{1}{32}}{\frac{1}{2}}\right)$			
	$= 2 \times 256 \left(\frac{31}{32}\right)$			
	= 16 × 31			
	= 496 ans.			
Q.13)	Find four numbers forming a G.P. in which the third term is greater than the first term by 9 & the second term is greater than fourth term by 18.			
Sol.13)	Let the four numbers are a, ar, ar^2, ar^3			
	We have, $a_3 = a_1 + 9$			
	$\Rightarrow ar^2 = a + 9$			
	$\Rightarrow ar^2 - a = 9$			
	$\Rightarrow a(r^2 - 1) = 9 \dots \dots \dots \dots (i)$			
	And $a_2 = a_4 + 18$			
	$\Rightarrow ar = ar^3 + 18$			
	$\Rightarrow ar - ar^3 = 18$ $\Rightarrow ar(r^2 - 1) = 18$			
	$\Rightarrow ar(r^2 - 1) = 18$ $\Rightarrow -ar(r^2 - 1) = 18 \dots $			
	$\Rightarrow -ur(r - 1) = 18$ (II) Divide (ii) and (i)			
	$\frac{-ar(r^2-1)}{a(r^2-1)} = \frac{18}{9}$			
	$a(r^2 - 1) \qquad 9$ $\therefore -r = 2$			
	Put in (i)			
	9(4-1) = 9			
	$\Rightarrow 3a = 9$			
	$\Rightarrow a = 3$			
	: the no.s are $3, -6, 12, 24$ ans.			
Q.14)	Evaluate $\sum_{k=1}^{11} (2+3^k)$			
Sol.14)				
	$= (2 + 2 + 2 + \dots \dots 11 \text{ terms}) + (3^{1} + 3^{2} + 3^{3} \dots \dots 3^{11})$			
	G.P. $a = 3, r = 3, n = 11$			
	$= 22 + 3\left(\frac{3^{11}-1}{3^{-1}}\right)$			
	$=22+\frac{3^{12}-3}{2}$			
	$=\frac{44+3^{12}-3}{2}$			
	$=\frac{41+3^{12}}{2}$ ans.			
Q.15)	If p^{th} , q^{th} , r^{th} and s^{th} terms of an A.P. are in G.P., then show that $(p-q)$, $(q-r)$, $(r-s)$			
	are also in G.P.			
· · · · · · · · · · · · · · · · · · ·				

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Sol.15)	$\Rightarrow a_p = a + (p-1)d \dots \{: a_p, a_q, a_r, a_s \text{ terms of an A. P.} \}$				
	$\Rightarrow a_q = a + (q - 1)d$				
	$\Rightarrow a_r = a + (r-1)d$				
	$\Rightarrow a_s = a + (s - 1)d$				
	Given that a_p , a_q , a_r , a_s are in G.P.				
	$\therefore \ \frac{a_q}{a_p} = \frac{a_r}{a_q} = \frac{a_s}{a_r} \dots \dots \dots \dots \dots (i)$				
	Consider $\frac{a_q}{a_p} = \frac{a_r}{a_q}$				
	$\Rightarrow \frac{a_p}{a_p} = \frac{a_r}{a_q} = \frac{a_q - a_r}{a_p - a_q} \dots \left\{ if \ \frac{a}{b} = \frac{c}{d} \ then \ \frac{a}{b} = \frac{c}{d} = \frac{a - c}{b - a} \right\}$				
	$\Rightarrow \frac{a_q}{a_p} = \frac{a_r}{a_q} = \frac{[a+(q-1)d]-[a+(r-1)d]}{[a+(p-1)d]-[a+(q-1)d]}$				
	$ \begin{array}{c} a_p & a_q & [a+(p-1)d] - [a+(q-1)d] \\ d(q-1) - d(r-1)d \end{array} $				
	$\Rightarrow \frac{d(q-1) - d(r-1)d}{d(p-1) - d(q-1)d}$				
	$\therefore \frac{a_q}{a_p} = \frac{a_r}{a_q} = \frac{q-r}{p-q} \dots \dots (ii)$				
	Now, consider $\frac{a_r}{a_q} = \frac{a_s}{a_r} = \frac{a_r - a_s}{a_q - a_r}$				
	$\begin{bmatrix} a_q & a_r & a_q - a_r \\ a_r & a_s & [a+(r-1)d] - [a+(s-1)d] \end{bmatrix}$				
	$\Rightarrow \frac{a_r}{a_q} = \frac{a_s}{a_r} = \frac{[a + (r-1)d] - [a + (s-1)d]}{[a + (q-1)d] - [a + (r-1)d]}$				
	$\Rightarrow \frac{d(r-1-s+1)}{d(q-1-r+1)}$				
	$\therefore \frac{a_{r}}{a_{q}} = \frac{a_{s}}{a_{r}} = \frac{r-s}{q-r} \dots \dots (iii)$				
	9 · ·				
	From (i), (ii) & (iii) a=r, $r=a$				
	$\Rightarrow \frac{q-r}{p-q} = \frac{r-q}{q-r}$				
	$\Rightarrow (q-r)^2 = (p-q)(r-s)$				
	$\Rightarrow (p-q), (q-r), (r-s)$ are in G.P.				
Q.16)	$\Rightarrow (p-q), (q-r), (r-s) \text{ are in G.P.}$ If the 4 th , 10 th and 16 th term of a G.P. are x, y, z respectively. Prove that x, y, z are in				
	G.P.				
Sol.16)	$\Rightarrow a_4 = x \Rightarrow ar^3 = x$				
	$\Rightarrow a_{10} = y \Rightarrow ar^9 = y$				
	$\Rightarrow a_{16} = z \Rightarrow ar^{15} = z$				
	To prove, x, y, z are in G.P.				
	i.e., to prove $y^2 = xz$				
	L.H.S. $y^2 = (ar^9)^2 = a^2r^{18}$				
	R.H.S. $xz = (ar^3)(ar^{15}) = a^2r^{18}$				
	Clearly $y^2 = xz$				
	$\therefore x, y, z$ are in G.P.				

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.