Downloaded from www.studiestoday.com

 StudiesToday.om| | SEQUENCE AND SERIES Class XI |
| :---: | :---: |
| Q.1) | If f is a function satisfying $f(x+y)=f(x) . f(y)$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=$ 120 . Find value of n. |
| Sol.1) | We have, $f(x+y)=f(x) f(y)$ $\begin{aligned} & f(1)=3 \\ & \sum_{x=1}^{n} f(x)=120 \end{aligned}$
 Now $\sum_{x=1}^{n} f(x)=f(1)+f(2)+f(3)+\ldots n$ terms $=120$
 Now $f(2)=f(1+1)=f(1) . f(1)=(3)(3)=9$ $f(3)=f(1+2)=f(1) \cdot f(2)=(3)(9)=27$ $f(4)=f(1+3)=f(1) \cdot f(3)=(3)(27)=81$
 \therefore series becomes $3+9+27+81+\ldots n \text { terms }=120$
 Clearly it is a G.P. with $a=3 \& r=3$ $\begin{aligned} & 3\left[\frac{3^{n-1}-1}{3-1}\right]=120 \\ & \Rightarrow 3 \frac{\left(3^{n}-1\right)}{2}=120 \\ & \Rightarrow 3^{n}-1=\frac{2 \times 120}{3} \\ & \Rightarrow 3^{n}-1=80 \\ & \Rightarrow 3^{n}=81 \\ & \Rightarrow 3^{n}=3^{4} \\ & \Rightarrow n=4 \text { ans. } \end{aligned}$ |
| Q.2) | If a, b, c are in G.P. \& $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$. Prove that x, y, z are in A.P. |
| Sol.2) | Given: a, b, c are in G.P. $\Rightarrow b^{2}=a c$
 Given: $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$
 Let $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}=k$ $\begin{aligned} & \Rightarrow a^{\frac{1}{x}}=k \\ & \Rightarrow a=k^{x} \end{aligned}$ $\Rightarrow b^{\frac{1}{y}}=k$ $\Rightarrow c^{\frac{1}{z}}=k$ $\Rightarrow b=k^{y}$ $\Rightarrow c=k^{z}$
 We have, $b^{2}=a c$ $\begin{aligned} & \Rightarrow\left(k^{y}\right)^{2}=\left(k^{x}\right) .\left(k^{z}\right) \\ & \Rightarrow k^{2 y}=k^{x+z} \\ & \Rightarrow 2 y=x+z \\ & \therefore x, y, z \text { are in G.P. ans. } \end{aligned}$ |
| Q.3) | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the G.M. between a and b. |
| Sol.3) | We have, $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=G . M .=\sqrt{a b}$ $\begin{aligned} & \Rightarrow \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=a^{\frac{1}{2}} \cdot b^{\frac{1}{2}} \\ & \Rightarrow a^{n+1}+b^{n+1}=a^{\frac{1}{2}} \cdot b^{\frac{1}{2}}\left(a^{n}+b^{n}\right) \\ & \Rightarrow a^{n+1}+b^{n+1}=a^{n+\frac{1}{2}} \cdot b^{\frac{1}{2}}+b^{n+\frac{1}{2}} \cdot a^{\frac{1}{2}} \\ & \Rightarrow a^{n+1}-a^{n+\frac{1}{2}} \cdot b^{\frac{1}{2}}=b^{n+\frac{1}{2}} \cdot a^{\frac{1}{2}}-b^{n+\frac{1}{2}} \end{aligned}$ |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\Rightarrow a^{n+\frac{1}{2}}\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)-b^{n+\frac{1}{2}}\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)$
$\Rightarrow a^{n+\frac{1}{2}}=b^{n+\frac{1}{2}}$	
$\Rightarrow\left(\frac{a}{b}\right)^{n+\frac{1}{2}}=1$	
	$\Rightarrow\left(\frac{a}{b}\right)^{n+\frac{1}{2}}=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow n+\frac{1}{2}=0$	
	$\Rightarrow n=\frac{-1}{2}$ ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	Prove that $a^{q-r} \cdot b^{r-p} \cdot c^{p-q}=1$
Sol.6)	Let $1^{\text {st }}$ term $=A$ Common ratio $=R$ Given, $a_{p}=a=A R^{p-1}$ $\begin{aligned} & a_{q}=b=A R^{q-1} \\ & a_{r}=c=A R^{r-1} \end{aligned}$ Taking L.H.S a^{q-r}. $b^{r-p} . c^{p-q}$ Substitute the value of a, b, c in L.H.S. $\begin{aligned} & =\left[A R^{p-1}\right]^{q-r} \cdot\left[A R^{q-1}\right]^{r-p} \cdot\left[A R^{r-1}\right]^{p-q} \\ & =A^{q-r} \cdot R^{(p-1)(q-r)} \cdot A^{r-p} \cdot R^{(q-1)(r-p)} \cdot A^{p-q} \cdot R^{(r-1)(p-q)} \\ & =A^{q-r+r-p+p-q} \cdot R^{p q-p r-q+r+q r-p q-r+p+r q-r q-p+q} \\ & =A^{0} \cdot R^{0} \\ & =(1)(1) \\ & =1 \text { R.H.S. (proved) } \end{aligned}$
Q.7)	If A and G be A.M. and G.M. respectively between two +ve numbers. Prove that he numbers are $A \pm \sqrt{(A+G)(A-G)}$.
Sol.7)	Let the numbers are a and b Then $A=\frac{a+b}{2}$ and $G=\sqrt{a b}$ Consider, $A+\sqrt{(A+G)(A-G)}$ $=A+\sqrt{A^{2}-G^{2}}$ Put value of $A \& G$ $\begin{aligned} & =\frac{a+b}{2}+\sqrt{\left(\frac{a+b}{2}\right)^{2}-(\sqrt{a b})^{2}} \\ & =\frac{a+b}{2}+\sqrt{\frac{a^{2}+b^{2}+2 a b}{4}-a b} \\ & =\frac{a+b}{2}+\sqrt{\frac{a^{2}+b^{2}-2 a b}{4}} \\ & =\frac{a+b}{2}+\sqrt{\left(\frac{a-b}{2}\right)^{2}} \\ & =\frac{a+b}{2}+\frac{a-b}{2} \\ & =2 a \\ & \therefore A+\sqrt{(A+G)(A-G)}=a \end{aligned}$ Similarly, $A+\sqrt{(A+G)(A-G)}=b$ \therefore The numbers are $A \pm \sqrt{(A+G)(A-G)}$ ans.
Q.8)	Let s be the sum, P be the product and R be the sum of reciprocal of n terms in G.P. Prove that $P^{2} R^{n}=S^{n}$.
Sol.8)	$\begin{aligned} & S=a+a r+a r^{2}+\ldots . \ldots . . a r^{n-1} \\ & \Rightarrow S=a\left(\frac{r^{n}-1}{r-1}\right) ; r>1 \\ & P=a+a r+a r^{2}+\ldots \ldots . . a r^{n-1} \\ & P=a^{n}+r^{1+2+\cdots \ldots . .(n-1)} \\ & P=a^{n} \cdot r^{\frac{n(n-1)}{2}} \\ & R=\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^{2}}+\ldots \frac{1}{a r^{n-1}} \end{aligned}$ It is also a G.P. with $1^{\text {st }}$ term $\frac{1}{a}$ and common ratio $\frac{1}{r}\left(\because \mathrm{r}>1 \therefore \frac{1}{r}<1\right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\begin{aligned} & \therefore \mathrm{R}=\frac{1}{a}\left[\frac{1-\frac{1}{r^{n}}}{1-\frac{1}{r}}\right] \\ & R=\frac{1}{a}\left[\frac{r^{n}-1}{r-1}\right] \cdot \frac{r}{r^{n}} \end{aligned}$ Taking L.H.S. P^{2}. R^{n} Put value of P and R in L.H.S. $\begin{aligned} & \therefore \text { L.H.S }\left[a^{n} \cdot r^{\frac{n(n-1)}{2}}\right]\left[\frac{1}{a}\left(\frac{r^{n}-1}{r-1}\right) \cdot \frac{r}{r^{n}}\right]^{n} \\ & =a^{2 n} \cdot r^{n(n-1)} \cdot \frac{1}{a^{n}}\left(\frac{r^{n}-1}{r-1}\right)^{n} \cdot \frac{r}{r^{n^{2}}} \\ & =a^{2 n-n} \cdot r^{n^{2}-n+n-n^{2}} \cdot\left(\frac{r^{n}-1}{r-1}\right)^{n} \\ & =a^{n} \cdot r^{0} \cdot\left(\frac{r^{n}-1}{r-1}\right)^{n} \\ & =a^{n} \cdot\left(\frac{r^{n}-1}{r-1}\right)^{n} \\ & =\left[a \cdot\left(\frac{r^{n}-1}{r-1}\right)^{n}\right] \\ & =S^{n} \text { RHS ans. } \end{aligned}$
Q.9)	Show that the ratio of the sum of $1^{\text {st }} n$ terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term is $\frac{1}{r^{n}}$.
Sol.9)	Here G.P. consist of (2n) no. of terms G.P $\begin{aligned} & 1^{\text {st }} \text { terms }=a_{1}=a \\ & \text { Ratio }=r \\ & \text { Terms }=n \\ & \text { Sum }=S_{n} \end{aligned}$ $1^{\text {st }} \text { term }=a_{n+1}=a r^{n}$ $\text { Ratio }=r$ $\text { Terms }=n$ $\text { Sum }=S_{n}^{\prime}$ $S_{n} \rightarrow$ sum of $1^{\text {st }} n$ terms $S_{n}^{\prime}{ }_{n} \rightarrow$ sym of terms from $(n+1)^{\text {th }}$ to (2n) terms $\begin{aligned} & S_{n}=a\left(\frac{r^{n}-1}{r-1}\right) \\ & S_{n}^{\prime}=a r^{n}\left[\frac{r^{n}-1}{r-1}\right] \end{aligned}$ Now, $\frac{s_{n}}{s_{n}^{\prime}}=\frac{a\left(\frac{r^{n}-1}{r-1}\right)}{\operatorname{ar}\left(\frac{r^{n}-1}{r-1}\right)}=\frac{1}{r^{n}}$ (proved)
Q.10)	If a, b, c, d and p are real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+$ $\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ then show that $a, b, c \& d$ are in G.P.
Sol.10)	To show that, $a, b, c \& d$ are in G.P. We have to prove $\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$ Given, $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ $\Rightarrow a^{2} p^{2}+b^{2} p^{2}+c^{2} p^{2}-2 a b p-2 b c p-2 c d p+b^{2}+c^{2}+d^{2} \leq 0$ $\Rightarrow\left(a^{2} p^{2}-2 a b p+b^{2}\right)+\left(b^{2} p^{2}-2 b c p+c^{2}\right)+\left(c^{2} p^{2}-2 c d p+d^{2}\right) \leq 0$ $\Rightarrow(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2} \leq 0$ But $(a p-b)^{2}+(b p-c)^{2}+(c p-d)^{2}$ cannot less than $0\{\because$ sum of square can never be negative $\}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

	$\frac{a_{3}}{a_{2}}=\frac{64}{128}=\frac{1}{2}$ Clearly it is a G.P. with $a=256, r=\frac{1}{2}$ and no. of term $=5$ $\begin{aligned} \therefore \text { sum } & =S_{n}=a\left(\frac{1-r^{n}}{1-r}\right) \\ & =S_{5}=256\left(\frac{1-\left(\frac{1}{2}\right)^{5}}{1-\frac{1}{2}}\right) \\ & =256\left(\frac{1-\frac{1}{32}}{\frac{1}{2}}\right) \\ & =2 \times 256\left(\frac{31}{32}\right) \\ & =16 \times 31 \\ & =496 \text { ans. } \end{aligned}$
Q.13)	Find four numbers forming a G.P. in which the third term is greater than the first term by 9 \& the second term is greater than fourth term by 18.
Sol.13)	Let the four numbers are $a, a r, a r^{2}, a r^{3}$ We have, $a_{3}=a_{1}+9$ $\begin{align*} & \Rightarrow a r^{2}=a+9 \\ & \Rightarrow a r^{2}-a=9 \\ & \Rightarrow a\left(r^{2}-1\right)=9 \tag{i} \end{align*}$ And $a_{2}=a_{4}+18$ $\begin{align*} & \Rightarrow a r=a r^{3}+18 \\ & \Rightarrow a r-a r^{3}=18 \\ & \Rightarrow \operatorname{ar}\left(r^{2}-1\right)=18 \\ & \Rightarrow-\operatorname{ar}\left(r^{2}-1\right)=18 \tag{ii} \end{align*}$ Divide (ii) and (i) $\begin{aligned} & \frac{-a r\left(r^{2}-1\right)}{a\left(r^{2}-1\right)}=\frac{18}{9} \\ & \therefore-r=2 \\ & \Rightarrow r=-2 \end{aligned}$ Put in (i) $\begin{aligned} & 9(4-1)=9 \\ & \Rightarrow 3 a=9 \\ & \Rightarrow a=3 \end{aligned}$ \therefore the no.s are $3,-6,12,24$ ans.
Q.14)	Evaluate $\sum_{k=1}^{11}\left(2+3^{k}\right)$
Sol.14)	$\begin{aligned} & \sum_{k=1}^{11}\left(2+3^{k}\right)=\left(2+3^{1}\right)+\left(2+3^{2}\right)+\left(2+3^{3}\right)+\ldots\left(2+3^{11}\right) \\ & =(2+2+2+\ldots \ldots .11 \text { terms })+\left(3^{1}+3^{2}+3^{3} \ldots \ldots . .3^{11}\right) \\ & \text { G.P. } a=3, r=3, n=11 \\ & =22+3\left(\frac{3^{11}-1}{3-1}\right) \\ & =22+\frac{3^{12}-3}{2} \\ & =\frac{44+3^{12}-3}{2} \\ & =\frac{41+3^{12}}{2} \text { ans. } \end{aligned}$
Q.15)	If $p^{\text {th }}, q^{\text {th }}, r^{\text {th }}$ and $s^{\text {th }}$ terms of an A.P. are in G.P., then show that $(p-q),(q-r),(r-s)$ are also in G.P.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Sol.15)	$\begin{aligned} & \Rightarrow a_{p}=a+(p-1) d \ldots\left\{\because a_{p}, a_{q}, a_{r}, a_{s} \text { terms of an A.P. }\right\} \\ & \Rightarrow a_{q}=a+(q-1) d \\ & \Rightarrow a_{r}=a+(r-1) d \\ & \Rightarrow a_{s}=a+(s-1) d \end{aligned}$ Given that $a_{p}, a_{q}, a_{r}, a_{s}$ are in G.P. $\begin{equation*} \therefore \frac{a_{q}}{a_{p}}=\frac{a_{r}}{a_{q}}=\frac{a_{s}}{a_{r}} \ldots \tag{i} \end{equation*}$ Consider $\frac{a_{q}}{a_{p}}=\frac{a_{r}}{a_{q}}$ $\begin{align*} & \Rightarrow \frac{a_{q}}{a_{p}}=\frac{a_{r}}{a_{q}}=\frac{a_{q}-a_{r}}{a_{p}-a_{q}} \ldots\left\{\text { if } \frac{a}{b}=\frac{c}{d} \text { then } \frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-a}\right\} \\ & \Rightarrow \frac{a_{q}}{a_{p}}=\frac{a_{r}}{a_{q}}=\frac{[a+(q-1) d]-[a+(r-1) d]}{[a+(p-1) d]-[a+(q-1) d]} \\ & \Rightarrow \frac{d(q-1)-d(r-1) d}{d(p-1)-d(q-1) d} \\ & \therefore \frac{a_{q}}{a_{p}}=\frac{a_{r}}{a_{q}}=\frac{q-r}{p-q} \ldots . . . \text { (ii) } \tag{ii} \end{align*}$ Now, consider $\frac{a_{r}}{a_{q}}=\frac{a_{s}}{a_{r}}=\frac{a_{r}-a_{s}}{a_{q}-a_{r}}$ $\begin{align*} & \Rightarrow \frac{a_{r}}{a_{q}}=\frac{a_{s}}{a_{r}}=\frac{[a+(r-1) d]-[a+(s-1) d]}{[a+(q-1) d]-[a+(r-1) d]} \\ & \Rightarrow \frac{d(r-1-s+1)}{d(q-1-r+1)} \\ & \therefore \frac{r_{r}}{a_{q}}=\frac{a_{s}}{a_{r}}=\frac{r-s}{q-r} \ldots \ldots . . \text { (iii) } \tag{iii} \end{align*}$ From (i), (ii) \& (iii) $\begin{aligned} & \Rightarrow \frac{q-r}{p-q}=\frac{r-q}{q-r} \\ & \Rightarrow(q-r)^{2}=(p-q)(r-s) \\ & \Rightarrow(p-q),(q-r),(r-s) \text { are in G.P. } \end{aligned}$
Q.16)	If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ term of a G.P. are x, y, z respectively. Prove that x, y, z are in G.P.
Sol.16)	$\begin{aligned} & \Rightarrow a_{4}=x \Rightarrow a r^{3}=x \\ & \Rightarrow a_{10}=y \Rightarrow a r^{9}=y \\ & \Rightarrow a_{16}=z \Rightarrow a r^{15}=z \end{aligned}$ To prove, x, y, z are in G.P. i.e., to prove $y^{2}=x z$ L.H.S. $y^{2}=\left(a r^{9}\right)^{2}=a^{2} r^{18}$ R.H.S. $x z=\left(a r^{3}\right)\left(a r^{15}\right)=a^{2} r^{18}$ Clearly $y^{2}=x z$ $\therefore x, y, z$ are in G.P.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

