Downloaded from www.studiestoday.com ## J.E.E. Main/ Advanced Foundation - XI Maths Worksheet Time: 60 min **Chapter#9. Sequences and Series Full Marks:** | Q.1 | Insert 6 numbers between – 6 and 29 such that the resulting sequence is an A.P. (3 marks) | |----------------------|---| | Q.2 | Find the sum of the series : 3 + 8 + 13 + + 33 | | Q.3 | Find the sum of odd integer from 1 to 21. | | Q.4 | Find the sum to n terms of the A.P., whose k th term is 5k + 1. (3 marks) | | Q.5 | If A_1 , A_2 , A_3 ,, A_n are n arithmetic means between a and b. Find the common difference between the terms. (2 marks) | | Q.6 | If the sum of n terms of an A.P. is 2mn + pn ² , where m and p are constants, find the common difference. (3 marks) | | Q.7 | The ratio of the sums of m and n terms of an A.P. is m^2 : n^2 . Show that the ratio of m^{th} and n^{th} term is $(2m-1)$: $(2n-1)$. (3 marks) | | Q.8 | Find the sum to n terms of the A.P., whose k th term is 5k + 1. (3 marks) | | Q.9 | Show that the sequence n^2 - 3 is not an A.P. (1 mark) | | Q.10 | Find the sum to n terms of the series $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots$ (3 marks) | | Q.11 | What is the value of : $1^2+2^2+3^2++8^2$? | | Q.12 | Find the sum of the series : 2 + 6 + 18 + + 486 | | | 2 0 10 100 | | Q.13 | a ⁿ⁺¹ + b ⁿ⁺¹ | | Q.13 | | | Q.13 | $\frac{\mathbf{a}^{n+1} + \mathbf{b}^{n+1}}{\mathbf{a}^{n} + \mathbf{b}^{n}}$ Find the value of n so that $\mathbf{a}^{n} + \mathbf{b}^{n}$ may be the geometric mean between a and b. (3) | | | $\frac{\mathbf{a}^{n+1} + \mathbf{b}^{n+1}}{\mathbf{a}^n + \mathbf{b}^n}$ Find the value of n so that $\mathbf{a}^n + \mathbf{b}^n$ may be the geometric mean between a and b. (3 marks) | | Q.14 | $\frac{\mathbf{a}^{n+1} + \mathbf{b}^{n+1}}{\mathbf{a}^n + \mathbf{b}^n}$ Find the value of n so that $\mathbf{a}^n + \mathbf{b}^n$ may be the geometric mean between a and b. (3 marks) What is the 20th term of the sequence, defined by $\mathbf{a}_n = (n-1)(2-n)(3+n)$? | | Q.14
Q.15 | Find the value of n so that $a^n + b^n$ may be the geometric mean between a and b. (3 marks) What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$? Write the 16 th term of the sequence defined by $a_n = n^2 - n + 1$. (1 mark) | | Q.14
Q.15 | Find the value of n so that $a^n + b^n$ may be the geometric mean between a and b. (3 marks) What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$? Write the 16 th term of the sequence defined by $a_n = n^2 - n + 1$. (1 mark) Find the value of n so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be the | | Q.14
Q.15
Q.16 | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. (3 marks) What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$? Write the 16 th term of the sequence defined by $a_n = n^2 - n + 1$. (1 mark) Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour | | Q.14
Q.15
Q.16 | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. (3 what is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$? Write the 16 th term of the sequence defined by $a_n = n^2 - n + 1$. (1 mark) Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and n^{th} hour? (3 marks) If the p^{th} , q^{th} and r^{th} terms of a G.P. are a, b and c, respectively. Prove that a^{q-r} , b^{r-p} and $c^{p-q} = 1$ | | Q.14
Q.15
Q.16 | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. (3 marks) What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$? Write the 16^{th} term of the sequence defined by $a_n = n^2 - n + 1$. (1 mark) Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and n^{th} hour? (3 marks) If the p^{th} , q^{th} and r^{th} terms of a G.P. are a, b and c, respectively. Prove that a^{q-r} , b^{r-p} and $c^{p-q} = 1$. (3 marks) |