## Downloaded from www.studiestoday.com

## J.E.E. Main/ Advanced Foundation - XI Maths Worksheet

Time: 60 min

**Chapter#9. Sequences and Series Full Marks:** 

| Q.1                  | Insert 6 numbers between – 6 and 29 such that the resulting sequence is an A.P. (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.2                  | Find the sum of the series : 3 + 8 + 13 + + 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.3                  | Find the sum of odd integer from 1 to 21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Q.4                  | Find the sum to n terms of the A.P., whose k <sup>th</sup> term is 5k + 1. (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q.5                  | If $A_1$ , $A_2$ , $A_3$ ,, $A_n$ are n arithmetic means between a and b. Find the common difference between the terms. (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q.6                  | If the sum of n terms of an A.P. is 2mn + pn <sup>2</sup> , where m and p are constants, find the common difference. (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.7                  | The ratio of the sums of m and n terms of an A.P. is $m^2$ : $n^2$ . Show that the ratio of $m^{th}$ and $n^{th}$ term is $(2m-1)$ : $(2n-1)$ . $(3 \text{ marks})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q.8                  | Find the sum to n terms of the A.P., whose k <sup>th</sup> term is 5k + 1. (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q.9                  | Show that the sequence $n^2$ - 3 is not an A.P. (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q.10                 | Find the sum to n terms of the series $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + \dots$ (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.11                 | What is the value of : $1^2+2^2+3^2++8^2$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.12                 | Find the sum of the series : 2 + 6 + 18 + + 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | 2   0   10     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q.13                 | a <sup>n+1</sup> + b <sup>n+1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q.13                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.13                 | $\frac{\mathbf{a}^{n+1} + \mathbf{b}^{n+1}}{\mathbf{a}^{n} + \mathbf{b}^{n}}$ Find the value of n so that $\mathbf{a}^{n} + \mathbf{b}^{n}$ may be the geometric mean between a and b. (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | $\frac{\mathbf{a}^{n+1} + \mathbf{b}^{n+1}}{\mathbf{a}^n + \mathbf{b}^n}$ Find the value of n so that $\mathbf{a}^n + \mathbf{b}^n$ may be the geometric mean between a and b. (3 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q.14                 | $\frac{\mathbf{a}^{n+1} + \mathbf{b}^{n+1}}{\mathbf{a}^n + \mathbf{b}^n}$ Find the value of n so that $\mathbf{a}^n + \mathbf{b}^n$ may be the geometric mean between a and b. (3 marks)  What is the 20th term of the sequence, defined by $\mathbf{a}_n = (n-1)(2-n)(3+n)$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.14<br>Q.15         | Find the value of n so that $a^n + b^n$ may be the geometric mean between a and b. (3 marks)  What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$ ?  Write the 16 <sup>th</sup> term of the sequence defined by $a_n = n^2 - n + 1$ . (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q.14<br>Q.15         | Find the value of n so that $a^n + b^n$ may be the geometric mean between a and b. (3 marks)  What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$ ?  Write the 16 <sup>th</sup> term of the sequence defined by $a_n = n^2 - n + 1$ . (1 mark)  Find the value of n so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be the                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Q.14<br>Q.15<br>Q.16 | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. (3 marks)  What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$ ?  Write the 16 <sup>th</sup> term of the sequence defined by $a_n = n^2 - n + 1$ . (1 mark)  Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b.  The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{nd}$ hour, $4^{th}$ hour                                                                                                                                                                             |
| Q.14<br>Q.15<br>Q.16 | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. (3 what is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$ ?  Write the 16 <sup>th</sup> term of the sequence defined by $a_n = n^2 - n + 1$ . (1 mark)  Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b.  The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{nd}$ hour, $4^{th}$ hour and $n^{th}$ hour? (3 marks)  If the $p^{th}$ , $q^{th}$ and $r^{th}$ terms of a G.P. are a, b and c, respectively. Prove that $a^{q-r}$ , $b^{r-p}$ and $c^{p-q} = 1$              |
| Q.14<br>Q.15<br>Q.16 | Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b. (3 marks)  What is the 20th term of the sequence, defined by $a_n = (n-1)(2-n)(3+n)$ ?  Write the $16^{th}$ term of the sequence defined by $a_n = n^2 - n + 1$ . (1 mark)  Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b.  The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of $2^{nd}$ hour, $4^{th}$ hour and $n^{th}$ hour? (3 marks)  If the $p^{th}$ , $q^{th}$ and $r^{th}$ terms of a G.P. are a, b and c, respectively. Prove that $a^{q-r}$ , $b^{r-p}$ and $c^{p-q} = 1$ . (3 marks) |