Downloaded from www.studiestoday.com

Class: XI **Subject: Mathematics** Assignment No. 2

Prove by the principle of Mathematical induction for all natural numbers:

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

Prove by the principle of Mathematical induction for all natural numbers: 2.

$$\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{Sin\left(\frac{n+1}{2}\right)\theta.Sin\frac{n\theta}{2}}{Sin\frac{\theta}{2}}$$

- Prove by the principle of Mathematical induction for all natural numbers: 3. $(11^{n+2} + 12^{2n+1})$ is divisible by 133.
- Find the conjugate of $\frac{\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+i\sqrt{2}\right)-\left(\sqrt{3}-i\sqrt{2}\right)}$ 4.
- If $z = -5 + 2\sqrt{-4}$ then show that $z^2 + 10z + 41 = 0$ and hence evaluate $(z^4 + 9z^3 + 35z^2 z + 4)$ 5.
- Express the following complex number in polar form: 6.

(i)
$$(\sqrt{3} + i)$$

(ii)
$$\sin 60^{\circ} + i \cos 60^{\circ}$$

(iii) (1-
$$\cos\theta$$
 + i $\sin\theta$)

(iii)
$$(1 - \cos \theta + i \sin \theta)$$
 (iv) $\frac{1+2i}{1-3i}$ (v) $(1+i\sqrt{3})$

- Solve for $x : 21x^2 28x + 10 = 0$. 7.
- Solve for $x : x^2 + 7ix + 6 = 0$. 8.
- Solve for $x : 2x^2 (3+7i) x (3-9i) = 0$. 9.
- Solve: $\frac{3n+1}{3} \frac{4x+5}{6} \le \frac{4x=1}{6} \frac{2x+3}{2}$. 10.
- A solution of 8% boric acid is to be dilated by adding a 2% boric acid solution to it. The 11. resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 liters of the 8% solution, how many liters of the 2% solution will have to be added?
- Find the region of the graph where all the inequalities $(x + 2y) \ge 0$, $(2x + y) \le 4$, $x \ge 0$ and 12. y≤2 hold good. Also find the ordered pairs of the vertices of the region.
- 13. Solve the system of linear inequations graphically: $x + 2y \le 8$, $2x + y \ge 2$, $x - y \le 1$, $x \ge 0$, $y \ge 0$

(i)
$$\lim_{x \to \pi/4} \left(\frac{Co \sec x^2 - 2}{Cotx - 1} \right)$$

(ii)
$$\lim_{x\to 0} \left(\frac{1-Cos5x}{1-Cos6x}\right)$$

(iii)
$$\lim_{x \to 0} \left(\frac{Co \sec x - Cotx}{x} \right)$$
 (iv) $\lim_{x \to \pi/2} \left(\frac{\pi}{2} - x \right) \tan x$

(iv)
$$\lim_{x \to \pi/2} \left(\frac{\pi}{2} - x \right) \tan x$$

(i)
$$\lim_{x \to 0} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \right)$$
 (ii) $\lim_{x \to 0} \left(\frac{x}{\sqrt{1+x} - 1} \right)$ (iii) $\lim_{x \to 4} \frac{3 - \sqrt{5+x}}{(1 - \sqrt{5-x})}$

(ii)
$$\lim_{x\to 0} \left(\frac{x}{\sqrt{1+x}-1} \right)$$

(iii)
$$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{(1 - \sqrt{5 - x})}$$

(iv)
$$\lim_{x \to a} \left(\frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \right)$$

(iv)
$$\lim_{x \to a} \left(\frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \right)$$
 (v) $\lim_{x \to a} \left(\frac{x\sqrt{x} - a\sqrt{a}}{x-a} \right)$ (vi) $\lim_{x \to 0} \left(\frac{(1+x)^6 - 1}{(1+x)^2 - 1} \right)$