Downloaded from www.studiestoday.com

CHAPTER - 2

RELATIONS AND FUNCTIONS

KEY POINTS

- Cartesian Product of two non-empty sets A and B is given by,
$A \times B=\{(a, b): a \in A, b \in B\}$
- If $(a, b)=(x, y)$, then $a=x$ and $b=y$
- Relation R from a non-empty set A to a non-empty set B is a subset of $A \times B$.
- Domain of $\mathrm{R}=\{\mathrm{a}:(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$
- Range of $R=\{b:(a, b) \in R\}$
- Co-domain of $R=$ Set B
- Range \subseteq Co-domain
- If $n(A)=p, n(B)=q$ then $n(A \times B)=p q$ and number of relations $=2^{p q}$
- A relation from a set A to a set B is said to be a function if every element of set A has one and only one image in set B .
- $D_{f}=\{x: f(x)$ is defined $\}$

$$
R_{f}=\left\{f(x): x \in D_{f}\right\}
$$

- Identity function, $f: R \rightarrow R ; f(x)=x \forall x \in R$ where R is the set of real numbers.
$D_{f}=R \quad R_{f}=R$

Downloaded from www.studiestoday.com

- Constant function, $f: R \rightarrow R ; f(x)=c \quad \forall x \in R$ where c is a constant $D_{f}=R \quad R_{f}=\{c\}$

- Modulus function, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} ; \mathrm{f}(\mathrm{x})=|\mathrm{x}| \quad \forall \mathrm{x} \in \mathrm{R}$

$$
D_{f}=R
$$

$R_{f}=R^{+}=\{x \in R: x \geq 0\}$

- Signum function, $f: R \rightarrow R ; f(x)=\left\{\begin{array}{l}1, \text { If } x>0 \\ 0, \text { if } x=0 \\ -1, \text { if } x<0\end{array}\right.$
$D_{f}=R$
$R_{f}=\{-1,0,1\}$

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

- Greatest Integer function, $f: R \rightarrow R ; f(x)=[x], x \in R$ assumes the value of the greatest integer, less than or equal to x
$D_{f}=R \quad R_{f}=Z$

- $f: R \rightarrow R, f(x)=x^{2}$
$D_{f}=R \quad R_{f}=[0, \infty)$

- $f: R \rightarrow R, f(x)=x^{3}$
$D_{f}=R \quad R_{f}=R$

- Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{R}$ be any two real functions where $\mathrm{x} \subset \mathrm{R}$ then
$(f \pm g)(x)=f(x) \pm g(x) \forall x \in X$
(fg) $(x)=f(x) g(x) \forall x \in X$
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad \forall x \in X \text { provided } g(x) \neq 0
$$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find a and b if $(a-1, b+5)=(2,3)$

If $A=\{1,3,5\}, B=\{2,3\}$ find: (Question-2, 3)
2. $A \times B$
3. $B \times A$

Let $A=\{1,2\}, B=\{2,3,4\}, C=\{4,5\}$, find (Question- 4,5)
4. $A \times(B \cap C)$
5. $A \times(B \cup C)$
6. If $P=\{1,3\}, Q=\{2,3,5\}$, find the number of relations from A to B
7. If $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$,
$R=\{(x, y):|x-y|$ is odd, $x \in A, y \in B\}$
Write R in roster form
Which of the following relations are functions. Give reason. (Questions 8 to 10)
8. $\quad R=\{(1,1),(2,2),(3,3),(4,4),(4,5)\}$
9. $R=\{(2,1),(2,2),(2,3),(2,4)\}$
10. $R=\{(1,2),(2,5),(3,8),(4,10),(5,12),(6,12)\}$

Which of the following arrow diagrams represent a function? Why? (Question- 11,12)
11.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

Let f and g be two real valued functions, defined by, $f(x)=x^{2}, g(x)=3 x+$ 2, find : (Question 13 to 16)
13. $(f+g)(-2)$
14. $(f-g)(1)$
15. $(\mathrm{fg})(-1)$
16. $\left(\frac{f}{g}\right)(0)$
17. If $f(x)=x^{3}$, find the value of,

$$
\frac{f(5)-f(1)}{5-1}
$$

18. Find the domain of the real function,

$$
f(x)=\sqrt{x^{2}-4}
$$

19. Find the domain of the function, $f(x)=\frac{x^{2}+2 x+3}{x^{2}-5 x+6}$

Find the range of the following functions, (Question- 20,21)
20. $f(x)=\frac{1}{1-x^{2}}$
21. $f(x)=x^{2}+2$
22. Find the domain of the relation,
$R=\{(x, y): x, y \in Z, x y=4\}$
Find the range of the following relations : (Question-23, 24)

Downloaded from www.studiestoday.com

23. $R=\{(a, b): a, b \in N$ and $2 a+b=10\}$
24. $R=\left\{\left(x, \frac{1}{x}\right): x \in z, 0<x<6\right\}$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

25. Let $A=\{1,2,3,4\}, B=\{1,4,9,16,25\}$ and R be a relation defined from A to B as,

$$
R=\left\{(x, y): x \in A, y \in B \text { and } y=x^{2}\right\}
$$

(a) Depict this relation using arrow diagram.
(b) Find domain of R.
(c) Find range of R.
(d) Write co-domain of R.
26. Let $R=\{(x, y): x, y \in N$ and $y=2 x\}$ be a relation on N. Find :
(i) Domain
(ii) Codomain
(iii) Range

Is this relation a function from N to N ?
27. Let $f(x)=\left\{\begin{array}{l}x^{2}, \text { when } 0 \leq x \leq 2 . \\ 2 x, \text { when } 2 \leq x \leq 5\end{array}\right.$

$$
g(x)=\left\{\begin{array}{l}
x^{2}, \text { when } 0 \leq x \leq 3 \\
2 x, \text { when } 3 \leq x \leq 5
\end{array}\right.
$$

Show that f is a function while g is not a function.
28. Find the domain and range of,

$$
f(x)=|2 x-3|-3
$$

29. Draw the graph of the Greatest Integer function

Downloaded from www.studiestoday.com

30. Draw the graph of the Constant function, $f: R \rightarrow R ; f(x)=2 \forall x \in R$. Also find its domain and range.

ANSWERS

1. $a=3, b=-2$
2. $A \times B=\{(1,2),(1,3),(3,2),(3,3),(5,2),(5,3)\}$
3. $B \times A=\{(2,1),(2,3),(2,5),(3,1),(3,3),(3,5)\}$
4. $\{(1,4),(2,4)\}$
5. $\{(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5)\}$
6. $2^{6}=64$
7. $R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$
8. Not a function because 4 has two images.
9. Not a function because 2 does not have a unique image.
10. Function
11. Not a function
12. -4
13. 0
14. $(-\infty,-2] \cup[2, \infty)$
15. $(-\infty, 0) \cup[1, \infty)$
16. $\{-4,-2,-1,1,2,4\}$
17. Function
18. 0
19. -1
20. 31
21. $R-\{2,3\}$
22. $[2, \infty)$
23. $\{2,4,6,8\}$
24. $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$
25.

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

(b) $\{1,2,3,4\}$
(c) $\{1,4,9,16\}$
(d) $\{1,4,9,16,25\}$
26. (i) N
(ii) N
(iii) Set of even natural numbers
yes, R is a function from N to N.
28. Domain is R

Range is $[-3, \infty)$
30. \quad Domain $=R$

Range $=\{2\}$

