CHAPTER - 2

RELATIONS AND FUNCTIONS

KEY POINTS

- Cartesian Product of two non-empty sets A and B is given by,
 - $A \times B = \{ (a,b) : a \in A, b \in B \}$
- If (a,b) = (x, y), then a = x and b = y
- Relation R from a non-empty set A to a non-empty set B is a subset of A × B.
- Domain of $R = \{a : (a,b) \in R\}$
- Range of $R = \{ b : (a,b) \in R \}$
- Co-domain of R = Set B
- Range ⊆ Co-domain
- If n(A) = p, n(B) = q then $n(A \times B) = pq$ and number of relations = 2^{pq}
- A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B.
- $D_f = \{x : f(x) \text{ is defined}\}$

$$R_f = \{f(x) : x \in D_f\}$$

• Identity function, $f: R \to R$; $f(x) = x \ \forall \ x \in R$ where R is the set of real numbers.

$$D_f = R$$
 $R_f = R$

• Constant function, $f: R \to R$; $f(x) = c \forall x \in R$ where c is a constant

$$D_f = R$$
 $R_f = \{c\}$

• Modulus function, $f : R \to R$; $f(x) = |x| \forall x \in R$

$$D_f = R$$

$$R_f = R^+ = \{ x \in R: x \ge 0 \}$$

• Signum function, $f: R \rightarrow R$; $f(x) = \begin{cases} 1, \text{If } x > 0 \\ 0, \text{ if } x = 0 \\ -1, \text{if } x < 0 \end{cases}$

$$D_f = R$$

$$R_f = \{-1,0,1\}$$

• Greatest Integer function, $f: R \to R$; f(x) = [x], $x \in R$ assumes the value of the greatest integer, less than or equal to x

$$D_f = R$$
 $R_f = Z$

• $f: R \rightarrow R, f(x) = x^2$

$$D_f = R$$
 $R_f = [0, \infty)$

• $f: R \rightarrow R, f(x) = x^3$

$$D_f = R$$
 $R_f = R$

• Let $f: X \to R$ and $g: X \to R$ be any two real functions where $x \subset R$ then

$$(f \pm g) (x) = f(x) \pm g(x) \ \forall \ x \in X$$

$$(fg) \ (x) \ = \ f(x) \ g(x) \ \ \forall \ x \ \in \ X$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 $\forall x \in X \text{ provided } g(x) \neq 0$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find a and b if (a - 1, b + 5) = (2, 3)

If
$$A = \{1,3,5\}$$
, $B = \{2,3\}$ find : (Question-2, 3)

- 2. A × B
- 3. $B \times A$

Let
$$A = \{1,2\}$$
, $B = \{2,3,4\}$, $C = \{4,5\}$, find (Question- 4,5)

- 4. $A \times (B \cap C)$
- 5. $A \times (B \cup C)$
- 6. If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from A to B
- 7. If $A = \{1,2,3,5\}$ and $B = \{4,6,9\}$,

$$R = \{(x, y) : |x - y| \text{ is odd, } x \in A, y \in B\}$$

Write R in roster form

Which of the following relations are functions. Give reason. (Questions 8 to 10)

- 8. $R = \{ (1,1), (2,2), (3,3), (4,4), (4,5) \}$
- 9. $R = \{ (2,1), (2,2), (2,3), (2,4) \}$
- 10. $R = \{ (1,2), (2,5), (3,8), (4,10), (5,12), (6,12) \}$

Which of the following arrow diagrams represent a function? Why? (Question- 11,12)

11.

12.

Let f and g be two real valued functions, defined by, $f(x) = x^2$, g(x) = 3x + 2, find : (Question 13 to 16)

- 13. (f + g)(-2)
- 14. (f g)(1)
- 15. (fg)(-1)
- 16. $\left(\frac{f}{g}\right)(0)$
- 17. If $f(x) = x^3$, find the value of,

$$\frac{f(5) - f(1)}{5 - 1}$$

18. Find the domain of the real function,

$$f(x) = \sqrt{x^2 - 4}$$

19. Find the domain of the function, $f(x) = \frac{x^2 + 2x + 3}{x^2 - 5x + 6}$

Find the range of the following functions, (Question- 20,21)

20.
$$f(x) = \frac{1}{1-x^2}$$

- 21. $f(x) = x^2 + 2$
- 22. Find the domain of the relation,

$$R = \{ (x, y) : x, y \in Z, xy = 4 \}$$

Find the range of the following relations: (Question-23, 24)

23. $R = \{(a,b) : a, b \in N \text{ and } 2a + b = 10\}$

24.
$$R = \left\{ \left(x, \frac{1}{x} \right) : x \in z, 0 < x < 6 \right\}$$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

25. Let $A = \{1,2,3,4\}$, $B = \{1,4,9,16,25\}$ and R be a relation defined from A to B as,

$$R = \{(x, y) : x \in A, y \in B \text{ and } y = x^2\}$$

- (a) Depict this relation using arrow diagram.
- (b) Find domain of R.
- (c) Find range of R.
- (d) Write co-domain of R.
- 26. Let $R = \{ (x, y) : x, y \in N \text{ and } y = 2x \}$ be a relation on N. Find :
 - (i) Domain
 - (ii) Codomain
 - (iii) Range

Is this relation a function from N to N?

27. Let
$$f(x) = \begin{cases} x^2, & \text{when } 0 \le x \le 2. \\ 2x, & \text{when } 2 \le x \le 5. \end{cases}$$

$$g(x) = \begin{cases} x^2, & \text{when } 0 \le x \le 3. \\ 2x, & \text{when } 3 \le x \le 5 \end{cases}$$

Show that f is a function while g is not a function.

28. Find the domain and range of,

$$f(x) = |2x - 3| - 3$$

29. Draw the graph of the Greatest Integer function

30. Draw the graph of the Constant function, $f : R \to R$; $f(x) = 2 \ \forall \ x \in R$. Also find its domain and range.

ANSWERS

1.
$$a = 3, b = -2$$

2.
$$A \times B = \{(1,2), (1,3), (3,2), (3,3), (5,2), (5,3)\}$$

3.
$$B \times A = \{ (2,1), (2,3), (2,5), (3,1), (3,3), (3,5) \}$$

6.
$$2^6 = 64$$

7.
$$R = \{ (1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6) \}$$

18.
$$(-\infty, -2] \cup [2, \infty)$$
 19. R - {2,3}

20.
$$(-\infty, 0) \cup [1, \infty)$$
 21. $[2,\infty)$

24.
$$\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$$

- (b) {1,2,3,4}(c) {1,4,9,16}
- (d) $\{1,4,9,16,25\}$
- 26. (i) N
 - (ii) N
 - (iii) Set of even natural numbers

yes, R is a function from N to N.

28. Domain is R

Range is $[-3, \infty)$

30. Domain = R

Range = $\{2\}$