Downloaded from www.studiestoday.com

Assignment Class XI (Chapter 2-Relations and Functions)

- 1. Find the domain and range of following functions:

 - (i) $\sqrt{x-3}$ (ii) $\sqrt{25-x^2}$ (iii) 5-|x+1|(iv) $\frac{1}{\sqrt{16-x^2}}$
- 2. Draw the graph of function $f(x) = \begin{cases} 1+2x & x < 0 \\ 3+5x & x \ge 0 \end{cases}$. Hence find its range.
- 3. If f(x) = 2x-3 and $g(x) = x^2 1$ then find:
 - (i) 3g+2f
 - (ii) g/f
 - (iii) 2g+5f
- 4. Determine a quadratic function $f(x) = ax^2 + bx + c$ if f(0) = 6, f(2) = 11 and f(-3) = 6
- 5. If $R = \{(x,y): y = x+1 \text{ and } y \in \{0, 1, 2, 3, 4, 5\}$
 - List the elements of R
 - Represent R by an arrow diagram (ii)
 - (iii) Find R^{-1} .
- 6. Let f be a subset of QXZ defined by $f = \{(\frac{m}{2}, n) : m, n \in z, n \neq 0\}$. Is f a function from Q to Z? Justify your answer.
- 7. Let $A = \{6, 7, 8, 10\}$ and $B = \{2,4,5\}$ and R is a relation from A to B defined as aRb if and only if a is divisible by b. Write R in roster form.
- 8. If $A = \{1,2,3\}$ and $B = \{4,5\}$ and $C = \{5,6\}$ verify that
 - $A \times (BUC) = (AXB) \cup (AXC)$
 - (ii) AX(B-C) = (AXB) (AXC)
- 9. If $f(X) = \frac{x-1}{x+1}$ then show that $f\left(\frac{1}{x}\right) = -f(x)$. 10. Find The domain of following functions:
- - (i) $f(x) = \frac{1}{\sqrt{\|x\| x}}$ (ii) $f(x) = \frac{x}{x^2 + 3x + 2}$ (iii) $f(x) = \frac{\|x\| x}{2x}$

Downloaded from www.studiestoday.com

Assignment on Limits and Derivatives

I) Evaluate the limits:

1.
$$\lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^4 - 8x^2 + 16}$$

2.
$$\lim_{x \to 3} \left(\frac{1}{x-3} - \frac{2}{x^2 - 4x + 3} \right)$$

3.
$$\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^4 + 4\sqrt{3}x - 15}$$

4.
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x-2} - \sqrt{4-x}}$$

5.
$$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$$

$$6. \quad \lim_{x \to 0} \frac{\cos Ax - \cos Bx}{x^2}$$

7.
$$\lim_{x \to 0} \frac{\cot 2x - \cos ec 2x}{x}$$

8.
$$\lim_{x \to \pi} \frac{1 + \cos^3 x}{\sin^2 x}$$

5.
$$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$$
6.
$$\lim_{x \to 0} \frac{\cos Ax - \cos Bx}{x^2}$$
7.
$$\lim_{x \to 0} \frac{\cot 2x - \cos ec 2x}{x}$$
8.
$$\lim_{x \to \pi} \frac{1 + \cos^3 x}{\sin^2 x}$$
9.
$$\lim_{x \to \pi} \frac{1 - \sin \frac{x}{2}}{\cos \frac{x}{2} \left(\cos \frac{x}{4} - \sin \frac{x}{4}\right)}$$
10.
$$\lim_{x \to \pi} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$
11.
$$\lim_{x \to \pi} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$
12.
$$\lim_{x \to \pi} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$

10.
$$x \to \frac{\pi}{6} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$

II) If
$$\frac{\lim_{x \to 2} \frac{x^4 - 1}{x - 1}}{x - 1} = \frac{\lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2}}{x - k}$$
, then find the value of K.

Differentiate the following by the method of First Principle: III)

1.
$$\sqrt{\sin x}$$
 2. $\tan \sqrt{x}$ 3. $\cos^2 x$ 4. $\tan x^2$ 5. $\frac{2x+3}{x-2}$

IV) i) If
$$y = \sqrt{\frac{\sec x - \tan x}{\sec x + \tan x}}$$
, show that $\frac{dy}{dx} = \sec x (\tan x + \sec x)$.

ii) If
$$y = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$$
, then find $\frac{dy}{dx}$.

iii) If
$$y = \sqrt{\frac{1-x}{1+x}}$$
, prove that $(1-x^2)\frac{dy}{dx} + y = 0$.

Downloaded from www.studiestoday.com

iv) If
$$y = \frac{\cos x - \sin x}{\cos x + \sin x}$$
, prove that $\frac{dy}{dx} + y^2 + 1 = 0$.

v) If
$$y = \frac{x}{x+5}$$
, prove that $x \frac{dy}{dx} = y(y-1)$.

vi) If
$$y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}$$
, prove that $2xy \frac{dy}{dx} = \frac{x}{a} - \frac{a}{x}$