

Q.1) Draw the graph of the function $f(x) = [x-1]$. Sol.1) $f(x) = [x-1]$ $e.g., when x = 1 then f(x) = [0] = 0 when x = 2 then f(x) = [1] = 1 Domain = R Range = Z Q.2) Let R be relation on N defined by R = \{(a,b): a = b \in N \text{ and } a = b^2\} Are the following true? (i) \{(a,a) \in R \text{ for all } a \in N, \text{ (ii) } (a,b) \in R \Rightarrow (b,a) \in R, \text{ (iii)} (a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R. Sol.2) R = \{(a,b): a = b^2\} (i) \geq eN But (2,2) \in R Since 2 \neq 2^2 : \text{ false} (iii) (4,2) \notin R as 4 = 2^2 but (2,4) \notin R Since 2 \neq 4^2 : \text{ false} (iii) (16,4) \in R \text{ and } (4,2) \in R as 16 = 4^4 \text{ and } 4 = 2^2 but (2,4) \notin R Since 16 \neq 2^2 : \text{ false} (iii) (16,4) \in R \text{ and } (4,2) \in R as 16 = 4^3 \text{ and } 4 = 2^2 but (2,4) \notin R Since 16 \neq 2^2 : \text{ false} (iii) (16,4) \in R \text{ and } (4,2) \in R as 16 = 4^3 \text{ and } 4 = 2^2 but (16,2) \notin R Sol.3) We have, R = \{(a,b): a = b \text{ is an integer}\} Q \to \text{ set of rational number} (1) \text{ for any } a \in Q, a = a = 0 \text{ which is an integer} \therefore (a,b) \in R \text{ and } (b,c) \in R \Rightarrow (a,c) \in R \Rightarrow a = b \text{ is an integer} \Rightarrow a = b \text{ in mich is also an integer} \Rightarrow (b,a) \in R (iii) \text{ it } (a,b) \in R \text{ and } (b,c) \in R \Rightarrow a = b \text{ in mich is also an integer} \Rightarrow (b,a) \in R (iii) \text{ it } (a,b) \in R \text{ and } (b,c) \in R \Rightarrow a = b \text{ in mich is also an integer} \Rightarrow (b,a) \in R (iiii) \text{ it } (a,b) \in R \text{ and } (b,c) \in R \Rightarrow a = b \text{ in mich is also an integer} \Rightarrow (b,a) \in R (iii) \text{ it } (a,b) \in R \text{ and } (b,c) \in R \Rightarrow a = b \text{ in mich is also an integer} \Rightarrow (b,a) \in R \text{ iiii} \text{ it } (a,b) \in R \text{ and } (b,c) \in R \Rightarrow a = b \text{ in mich is also an integer} \Rightarrow (b,a) \in R \text{ iiiii} \text{ it } (a,b) \in R \text{ and } (b,c) \in R \Rightarrow (a,c) \in R iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$		RELATIONS & FUNCTIONS
Sol.1) $f(x) = [x-1] \\ e.g., when x = 1 then f(x) = [0] = 0 when x = 2 then f(x) = [1] = 1 Domain = R \\ Range = Z Q.2) Let R be relation on N defined by R = \{(a,b): a = b \in N \text{ and } a = b^2\} Are the following true? (i) \{(a,a) \in R \text{ for all } a \in N, \text{ (ii) } (a,b) \in R \Rightarrow (b,a) \in R, \text{ (iii)} \} (a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R. Sol.2) R = \{(a,b): a = b^2\} (i)2 \in N But \{(2,2) \in R\} Since 2 \neq 2^2 : false (ii) (4,2) \notin R Since 2 \neq 2^2 : false (iii) (16,4) \in R \text{ and } (4,2) \in R as 16 = 4^2 and 4 = 2^2 but \{(2,4) \notin R\} Since 16 \neq 2^2 : false (iii) (16,4) \in R \text{ and } (4,2) \in R as 16 = 4^3 and 4 = 2^2 but \{(16,2) \notin R\} Since 16 \neq 2^2 : false (a,b) \in R \text{ and } (b,c) \in R \Rightarrow (a,c) \in R. Sol.3) We have, R = \{(a,b): a = b \text{ is an integer}\} Q \Rightarrow \text{ set of rational number} (i) for any a \in Q, a = a = 0 which is an integer (a,a) \in R (iii) let \{(a,b) \in R\} (a = a = b \text{ is an integer}\} (a = a = b \text{ is an integer}) (a = a = $	Q.1)	Draw the graph of the function $f(x) = [x - 1]$.
e.g., when $x = 1$ then $f(x) = [0] = 0$ when $x = 2$ then $f(x) = [1] = 1$ Domain = R Range = Z Q.2) Let R be relation on N defined by $R = \{(a, b): a = b \in N \text{ and } a = b^2\}$ Are the following true? (i) $\{(a, a) \in R \text{ for all } a \in N, \text{ (ii) } (a, b) \in R \Rightarrow (b, a) \in R, \text{ (iii)} (a, b) \in R \Rightarrow (b, a) \in R, \text{ (iii)} (a, b) \in R \Rightarrow (b, a) \in R, \text{ (iii)} (a, b) \in R \Rightarrow (b, a) \in R, \text{ (iii)} (a, b) \in R \Rightarrow (a, b): a = b^2\}$ Sol.2) $R = \{(a, b): a = b^2\}$ (i) $2 \in N$ But $\{2, 2\} \in R$ Since $2 \neq 2^2 : \text{ false}$ (iii) $\{4, 2\} \notin R$ Since $2 \neq 4^2 : \text{ false}$ (iii) $\{4, 2\} \notin R$ Since $2 \neq 4^2 : \text{ false}$ (iii) $\{4, 2\} \notin R$ Since $2 \neq 4^2 : \text{ false}$ (iii) $\{4, 2\} \notin R$ Since $16 \neq 2^2 : \text{ false}$ Let R be a relation on Q defined by $= \{(a, b): a, b \in Q \text{ and } 4 - b \in Z \text{ i. e., } a - b \text{ is an integer}\}$. Show that, (i) $\{a, a\} \in R \text{ for all } a \in Q, \text{ (ii) } (a, b) \in R \Rightarrow (a, b) \in R \text{ (iii)}$ (a, b) $\in R \text{ and } (b, c) \in R \Rightarrow (a, c) \in R$ Sol.3) We have, $R = \{(a, b): a - b \text{ is an integer}\}$ $Q \Rightarrow \text{ set of rational number}$ (i) for any $a \in Q, a - a = 0$ which is an integer (ii) for any $a \in Q, a - a = 0$ which is an integer $\Rightarrow a - b = m \text{ where } m \in Z$ $\Rightarrow b - a = -m \text{ which is also an integer}$ $\Rightarrow a - b = m \text{ where } m \in Z$ $\Rightarrow b - a = -m \text{ which is also an integer}$ $\Rightarrow (b, a) \in R$ (iii) let $\{(a, b): a \in R\}$ $\Rightarrow a - b = m \text{ and } b - c = n \text{ (where } m, n \in Z)$ Now, $\{(a - c): a = b\} + (b - c)$ $= m + n \{: \text{ sum of two integers is also an integer}\}$ $\Rightarrow (a, c) \in R$ Q.4) If $A = \{(2,3) \text{ and } B = \{(1,2,3), \text{ Find the no. of relations.}$ Sol.4) $A = \{(2,3) \text{ and } B = \{(1,2,3), \text{ Find the no. of relations.}$	•	
Domain = R Range = Z Q.2) Let R be relation on N defined by $R = \{(a,b): a = b \in N \text{ and } a = b^2\}$ Are the following true? (i) $(a,a) \in R$ for all $a \in N$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iiii) $(a,b) \in R \Rightarrow (a,c) \in R$. Sol.2) $R = \{(a,b): a = b^2\}$ (i) $2 \in N$ But $(2,2) \in R$ Since $2 \neq 2^2 \therefore$ false (ii) $(4,2) \notin R$ as $4 = 2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2 \therefore$ false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2 \therefore$ false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4 - b \in Z \text{ i.e., } a - b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (a,b) \in R \Rightarrow (a,$,	
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		when $x = 2$ then $f(x) = [1] = 1$
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		y = [x]
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		2
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		43 2 1 2 3×X
Q.2) Let <i>R</i> be relation on <i>N</i> defined by <i>R</i> = {((<i>a</i> , <i>b</i>): <i>a</i> = <i>b</i> ∈ <i>N</i> and <i>a</i> = <i>b</i> ² } Are the following true? (i) (<i>a</i> , <i>a</i>) ∈ <i>R</i> for all $a \in N$, (ii) (<i>a</i> , <i>b</i>) ∈ $R \Rightarrow (b, a) \in R$, (iii) (<i>a</i> , <i>b</i>) ∈ $R \Rightarrow (a, c) \in R$. Sol.2) $R = \{(a, b): a = b^2\}$ (()2 ∈ <i>N</i> But (2,2) ∈ <i>R</i> Since $2 \neq 2^2$ ∴ false (ii) (4,2) ∉ <i>R</i> as $4 = 2^2$ but (2,4) ∉ <i>R</i> Since $2 \neq 4^2$ ∴ false (iii) (16,4) ∈ <i>R</i> and (4,2) ∈ <i>R</i> as $16 = 4^2$ and $4 = 2^2$ but (16,2) ∉ <i>R</i> Since $16 \neq 2^2$ ∴ false Q.3) Let <i>R</i> be a relation on <i>Q</i> defined by = {(<i>a</i> , <i>b</i>): <i>a</i> , <i>b</i> ∈ <i>Q</i> and $4 - b \in Z$ i.e. , $a - b$ is an integer}. Show that, (i) (<i>a</i> , <i>a</i>) ∈ <i>R</i> for all $a \in Q$, (ii) (<i>a</i> , <i>b</i>) ∈ <i>R</i> ⇒ (<i>b</i> , <i>a</i>) ∈ <i>R</i> , (iii) (<i>a</i> , <i>b</i>) ∈ <i>R</i> and (<i>b</i> , <i>c</i>) ∈ <i>R</i> ⇒ (<i>a</i> , <i>c</i>) ∈ <i>R</i> . Sol.3) We have, $R = \{(a, b): a - b$ is an integer} $Q \rightarrow \text{set}$ of frational number (i) for any $a \in Q$, $a - a = 0$ which is an integer ∴ (<i>a</i> , $a \in R$ (ii) let (<i>a</i> , <i>b</i>) ∈ <i>R</i> ⇒ $a - b$ is an integer ⇒ $b - a = -m$ which is also an integer ⇒ $b - a = -m$ which is also an integer ⇒ $b - a = -m$ which is also an integer ⇒ $a - b = m$ and $b - c = n$ (where $m, n \in Z$) Now, $a - c = (a - b) + (b - c)$ = $m + n \in S$ sum of two integers is also an integer} ∴ (<i>a</i> , <i>c</i>) ∈ <i>R</i> Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations.		
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		
Range = Z Q.2) Let R be relation on N defined by R = {(a, b): a = b ∈ N and a = b²} Are the following true? (i) (a, a) ∈ R for all a ∈ N, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R, (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.2) R = {(a, b): a = b²} (i)2 ∈ N But (2,2) ∈ R Since 2 ≠ 2² · false (ii) (4,2) ∉ R as 4 = 2² but (2,4) ∉ R Since 2 ≠ 4² · false (iii) (16,4) ∈ R and (4,2) ∈ R as 16 = 4² and 4 = 2² but (16,2) ∉ R since 16 ≠ 2² · false Q.3) Let R be a relation on Q defined by = {(a, b): a, b ∈ Q and 4 − b ∈ Z i.e., a − b is an integer}. Show that, (i) (a, a) ∈ R for all a ∈ Q, (ii) (a, b) ∈ R ⇒ (b, a) ∈ R, (iii) (a, b) ∈ R and (b, c) ∈ R ⇒ (a, c) ∈ R. Sol.3) We have, R = {(a, b): a − b is an integer} Q → set of rational number (i) for any a ∈ Q, a − a = 0 which is an integer ∴ (a, a) ∈ R (ii) let (a, b) ∈ R ⇒ a − b = m where m ∈ Z ⇒ b − a = −m which is also an integer ⇒ (b, a) ∈ R (iii) let (a, b) ∈ R and (b, c) ∈ R ⇒ a − b = m and b − c = n (where m, n ∈ Z) Now, (a − c) = (a − b) + (b − c) = m + n {··· sum of two integers is also an integer} ∴ (a, c) ∈ R Q.4) If A = (2,3) and B = (1,2,3). Find the no. of relations. Sol.4) Her m = 2 and n = 3		Domain = R
Q.2) Let R be relation on N defined by $R = \{(a,b): a = b \in N \ and \ a = b^2\}$ Are the following true? (i) $(a,a) \in R$ for all $a \in N$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $R = \{(a,b): a = b^2\}$ (i) $R = \{(a,b): a = b^2\}$ (i) $R = \{(a,b): a = b^2\}$ (ii) $R = \{(a,b): a \in A \in$		
Are the following true? (i) $(a,a) \in R$ for all $a \in N$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iiii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iiii) $(a,b) \in R \Rightarrow (a,c) \in R$. Sol.2) $R = \{(a,b): a = b^2\}$ (i) $2 \in N$ But $(2,2) \in R$ Since $2 \neq 2^2 : \text{false}$ (ii) $(4,2) \notin R$ as $4 = 2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2 : \text{false}$ (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2 : \text{false}$ Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4 - b \in Z \text{ i.e., } a - b \text{ is an integer}\}. Show that, (i) (a,a) \in R for all a \in Q, (ii) (a,b) \in R \Rightarrow (b,a) \in R, (iii) (a,b) \in R \Rightarrow (a,c) \in R. Sol.3) We have, R = \{(a,b): a - b \text{ is an integer}\} Q \Rightarrow \text{set of rational number} (i) for any a \in Q, a - a = 0 which is an integer : (a,a) \in R (ii) let (a,b) \in R \Rightarrow a - b \text{ is an integer} \Rightarrow (a,a) \in R (iii) let (a,b) \in R \Rightarrow a - b \text{ is an integer} \Rightarrow (b,a) \in R (iii) let (a,b) \in R \Rightarrow a - b \text{ is an integer} \Rightarrow (b,a) \in R (iii) let (a,b) \in R \Rightarrow a - b \text{ is an integer} \Rightarrow (b,a) \in R (iii) let (a,b) \in R \Rightarrow a - b \text{ is an integer} \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R \Rightarrow (a,c) \in R (iii) let (a,b) \in R (iii) let (a,b) \in R (iii) let (a,b) \in R (iii) let (a,b)$	0.2)	
Sol.2) $R = \{(a,b): a = b^2\}$ (i) $2 \in \mathbb{N}$ But $(2,2) \in \mathbb{R}$ Since $2 \neq 2^2 \div \text{false}$ (ii) $(4,2) \notin \mathbb{R}$ as $4 = 2^2$ but $(2,4) \notin \mathbb{R}$ Since $2 \neq 4^2 \div \text{false}$ (iii) $(16,4) \in \mathbb{R}$ and $(4,2) \in \mathbb{R}$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin \mathbb{R}$ since $16 \neq 2^2 \div \text{false}$ (iii) $(16,4) \in \mathbb{R}$ and $(4,2) \in \mathbb{R}$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin \mathbb{R}$ since $16 \neq 2^2 \div \text{false}$ Q.3) Let \mathbb{R} be a relation on \mathbb{Q} defined by $= \{(a,b):a,b \in \mathbb{Q} \text{ and } 4 - b \in \mathbb{Z} \text{ i.e., } a - b \text{ is an integer}\}$. Sow that, (i) $(a,a) \in \mathbb{R}$ for all $a \in \mathbb{Q}$, (ii) $(a,b) \in \mathbb{R} \Rightarrow (b,a) \in \mathbb{R}$, (iii) $(a,b) \in \mathbb{R} \Rightarrow (a,b):a - b \text{ is an integer}\}$ $\mathbb{Q} \Rightarrow \text{set of rational number}$ (i) for any $a \in \mathbb{Q}$, $a - a = 0$ which is an integer $a = a + b = a $	Q.2)	
Sol.2) $R = \{(a,b): a = b^2\} \\ (i)2 \in N \\ \text{But } (2,2) \in R \\ \text{Since } 2 \neq 2^2 \div \text{false} \\ (ii) \ (4,2) \notin R \\ \text{as } 4 = 2^2 \\ \text{but } (2,4) \notin R \\ \text{Since } 2 \neq 4^2 \cdot \text{false} \\ (iii) \ (16,4) \in R \text{ and } (4,2) \in R \\ \text{as } 16 = 4^2 \text{ and } 4 = 2^2 \\ \text{but } (16,2) \notin R \\ \text{since } 16 \neq 2^2 \cdot \text{false} $ Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4 - b \in Z \text{ i. e. , } a - b \text{ is an integer} \}$. Show that, (i) $(a,a) \in R \text{ for all } a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (b,a) \in R \Rightarrow (a,b): a - b \text{ is an integer} \}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a - a = 0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R \Rightarrow a - b \Rightarrow a \Rightarrow a$		
(i) $2 \in N$ But $(2,2) \in R$ Since $2 \neq 2^2$: false (ii) $(4,2) \notin R$ as $4 = 2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2$: false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4 - b \in Z \text{ i.e., } a - b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \text{ and } (b,c) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a - b \text{ is an integer}\}$ $Q \Rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a - a = 0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow b - a = -m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b = m \text{ and } b - c = n \text{ (where } m, n \in Z)$ Now, $(a - c) = (a - b) + (b - c)$ $= m + n \text{ (ivi) sum of two integers is also an integer}$ $\therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations. Sol.4) $A = (2,3)$ and $B = (1,2,3)$.	Sol 2)	
But $(2,2) \in R$ Since $2 \neq 2^2$: false (ii) $(4,2) \notin R$ as $4 = 2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2$: false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4-b \in Z \text{ i.e., } a-b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \text{ is an integer}\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a-a=0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a-b$ is an integer $\Rightarrow a-b = m$ where $m \in Z$ $\Rightarrow b-a = -m$ which is also an integer $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b = m$ and $b-c = n$ (where $m,n \in Z$) Now, $(a-c) = (a-b) + (b-c)$ $= m+n \{\because \text{ sum of two integers is also an integer}\}$ = integer $\therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations.	301.27	
Since $2 \neq 2^2$: false (ii) $(4,2) \notin R$ as $4 = 2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2$: false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4 - b \in Z \text{ i.e., } a - b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \text{ is an integer}\}$ $Q \Rightarrow$ set of rational number (i) for any $a \in Q$, $a-a=0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a-b$ is an integer $\Rightarrow a-b = m$ where $m \in Z \Rightarrow b-a=m$ which is also an integer $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b=m$ and $b-c=n$ (where $m,n \in Z$) Now, $(a-c)=(a-b)+(b-c)=m+n$ $\{: \text{sum of two integers is also an integer}\}$ $= integer$ $\therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations.		
(ii) $(4,2) \notin R$ as $4 = 2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2$: false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4 - b \in Z \text{ i.e. }, a - b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R \text{ for all } a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a - b \text{ is an integer}\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a - a = 0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iiii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iiii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (a,c) \in R$ (iiii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (a,c) \in R$ (iiii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (a,c) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (a,c) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (a,c) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a - b \text{ is an integer}$ $\Rightarrow (a,c) \in R$ (iiii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow (a,c) \in R$ (iiii) let $(a,b) \in R$ (iii) let $(a,b) \in R$ (iiii) le		
as $4=2^2$ but $(2,4) \notin R$ Since $2 \neq 4^2 :$ false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16=4^2$ and $4=2^2$ but $(16,2) \notin R$ since $16 \neq 2^2 :$ false Q.3) Let R be a relation on Q defined by $=\{(a,b):a,b\in Q \text{ and } 4-b\in Z \text{ i. e., } a-b \text{ is an integer}\}$. Show that, (i) $(a,a)\in R$ for all $a\in Q$, (ii) $(a,b)\in R\Rightarrow (b,a)\in R$, (iii) $(a,b)\in R$ and $(b,c)\in R\Rightarrow (a,c)\in R$. Sol.3) We have, $R=\{(a,b):a-b \text{ is an integer}\}$ $Q\rightarrow \text{set of rational number}$ (i) for any $a\in Q$, $a-a=0$ which is an integer $:(a,a)\in R$ (ii) let $(a,b)\in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow a-b \text{ in an integer}$ $\Rightarrow a-b \text{ in mother } m\in Z$ $\Rightarrow b-a=-m$ which is also an integer $\Rightarrow (b,a)\in R$ (iii) let $(a,b)\in R$ and $(b,c)\in R$ $\Rightarrow a-b=m$ and $b-c=n$ (where $m,n\in Z$) Now, $(a-c)=(a-b)+(b-c)=m+n$ {: sum of two integers is also an integer} $:(a,c)\in R$ If $A=(2,3)$ and $B=(1,2,3)$. Find the no. of relations.		
Since $2 \neq 4^2$: false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4-b \in Z \text{ i. e., } a-b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \text{ is an integer}\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a-a=0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in$		
Since $2 \neq 4^2$: false (iii) $(16,4) \in R$ and $(4,2) \in R$ as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin R$ since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4-b \in Z \text{ i. e., } a-b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \text{ is an integer}\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a-a=0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow (b,a) \in R$ (iv) let $(a,b) \in$		but $(2,4) \notin R$
as $16 = 4^2$ and $4 = 2^2$ but $(16,2) \notin \mathbb{R}$ since $16 \neq 2^2$: false Q.3) Let \mathbb{R} be a relation on \mathbb{Q} defined by $= \{(a,b): a,b \in Q \ and \ 4-b \in Z \ i.e.,a-b \ is \ an \ integer\}$. Show that, $(i) \ (a,a) \in R \ for \ all \ a \in Q, \ (ii) \ (a,b) \in R \Rightarrow (b,a) \in R, \ (iii)$ $(a,b) \in R \ and \ (b,c) \in R \Rightarrow (a,c) \in R.$ Sol.3) We have, $R = \{(a,b): a-b \ is \ an \ integer\}$ $Q \rightarrow \text{set of rational number}$ $(i) \ for \ any \ a \in Q, a-a=0 \ which \ is \ an \ integer$ $\therefore (a,a) \in R$ $(iii) \ let \ (a,b) \in R$ $\Rightarrow a-b \ is \ an \ integer$ $\Rightarrow a-b = m \ where \ m \in Z$ $\Rightarrow b-a = -m \ which \ is \ also \ an \ integer$ $\Rightarrow (b,a) \in R$ $(iii) \ let \ (a,b) \in R \ and \ (b,c) \in R$ $\Rightarrow a-b = m \ and \ b-c = n \ (where \ m,n \in Z)$ Now, $(a-c) = (a-b) + (b-c)$ $= m+n \ \{: \ sum \ of \ two \ integers \ is \ also \ an \ integer\}$ $= integer$ $\therefore (a,c) \in R$ Q.4) If $A = (2,3) \ and \ B = (1,2,3)$. Find the no. of relations.		
but $(16,2) \notin \mathbb{R}$ since $16 \neq 2^2$: false Q.3) Let \mathbb{R} be a relation on \mathbb{Q} defined by $= \{(a,b): a,b \in Q \ and \ 4-b \in Z \ i.e.,a-b \ is \ an \ integer\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \ is \ an \ integer\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a-a=0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a-b \ is \ an \ integer$ $\Rightarrow a-b = m \ where \ m \in Z$ $\Rightarrow b-a = -m \ which \ is \ also \ an \ integer$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b = m \ and \ b-c = n \ (where \ m,n \in Z)$ Now, $(a-c) = (a-b) + (b-c)$ $= m + n \{\because \ sum \ of \ two \ integers \ is \ also \ an \ integer\}$ $= integer$ $\therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations.		(iii) $(16,4) \in R$ and $(4,2) \in R$
since $16 \neq 2^2$: false Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \text{ is an integer}\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \text{ is an integer}\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a-a=0$ which is an integer $\therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow a-b = m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b = m \text{ and } b-c = n \text{ (where } m,n \in Z)$ Now, $(a-c) = (a-b) + (b-c)$ $= m+n \{\because \text{ sum of two integers is also an integer}\}$ $= integer$ $\therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations.		as $16 = 4^2$ and $4 = 2^2$
Q.3) Let R be a relation on Q defined by $= \{(a,b): a,b \in Q \ and \ 4-b \in Z \ i.e.,a-b \ is \ an \ integer\}$. Show that, (i) $(a,a) \in R$ for all $a \in Q$, (ii) $(a,b) \in R \Rightarrow (b,a) \in R$, (iii) $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$. Sol.3) We have, $R = \{(a,b): a-b \ is \ an \ integer\}$ $Q \rightarrow \text{set of rational number}$ (i) for any $a \in Q$, $a-a=0$ which is an integer $ \therefore (a,a) \in R$ (ii) let $(a,b) \in R$ $ \Rightarrow a-b \ is \ an \ integer$ $ \Rightarrow a-b = m \ where \ m \in Z$ $ \Rightarrow b-a = -m \ which is \ also \ an \ integer$ $ \Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $ \Rightarrow a-b = m \ and \ b-c = n \ (where \ m,n \in Z)$ Now, $(a-c) = (a-b) + (b-c)$ $ = m+n \ \{\because \text{ sum of two integers is also an integer}\}$ $ = integer$ $ \therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations.		but (16,2) ∉ R
$b \ is \ an \ integer \}. \ Show \ that, \ (i) \ (a,a) \in R \ for \ all \ a \in Q, \ (ii) \ (a,b) \in R \Rightarrow (b,a) \in R, \ (iii) \ (a,b) \in R \ and \ (b,c) \in R \Rightarrow (a,c) \in R.$ $Sol.3) \qquad We \ have, \ R = \{(a,b): a-b \ is \ an \ integer \}$ $Q \rightarrow \text{set of rational number}$ $(i) \ for \ any \ a \in Q, \ a-a=0 \ \text{which is an integer}$ $\therefore (a,a) \in R$ $(ii) \ let \ (a,b) \in R$ $\Rightarrow a-b \ is \ an \ integer$ $\Rightarrow a-b = m \ where \ m \in Z$ $\Rightarrow b-a = -m \ which \ is \ also \ an \ integer$ $\Rightarrow (b,a) \in R$ $(iii) \ let \ (a,b) \in R \ and \ (b,c) \in R$ $\Rightarrow a-b = m \ and \ b-c = n \ (where \ m,n \in Z)$ $Now, \ (a-c) = (a-b) + (b-c)$ $= m+n \ \{\because \ sum \ of \ two \ integers \ is \ also \ an \ integer\}$ $= integer$ $\therefore \ (a,c) \in R$ $Q.4) \qquad \text{If } A = (2,3) \ and \ B = (1,2,3). \ Find \ the \ no. \ of \ relations.$ $Sol.4) \qquad A = (2,3) \ and \ B = (1,2,3)$ $Here \ m = 2 \ and \ n = 3$		since $16 \neq 2^2$: false
$(a,b) \in R \text{ and } (b,c) \in R \Rightarrow (a,c) \in R.$ Sol.3) We have, $R = \{(a,b) : a-b \text{ is an integer}\}$ $Q \rightarrow \text{ set of rational number}$ $(i) \text{ for any } a \in Q, a-a=0 \text{ which is an integer}$ $\therefore (a,a) \in R$ $(ii) \text{ let } (a,b) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow a-b = m \text{ where } m \in Z$ $\Rightarrow b-a = -m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ $(iii) \text{ let } (a,b) \in R \text{ and } (b,c) \in R$ $\Rightarrow a-b = m \text{ and } b-c = n \text{ (where } m,n \in Z)$ $\text{Now, } (a-c) = (a-b) + (b-c)$ $= m+n \{\because \text{ sum of two integers is also an integer}\}$ $= \text{ integer}$ $\therefore (a,c) \in R$ $Q.4) \text{ If } A = (2,3) \text{ and } B = (1,2,3). \text{ Find the no. of relations.}$ $Sol.4) A = (2,3) \text{ and } B = (1,2,3)$ $Here m = 2 \text{ and } n = 3$	Q.3)	Let R be a relation on Q defined by = $\{(a,b): a,b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b \in Z \text{ i.e.}, a-b \in Q \text{ and } 4-b $
Sol.3) We have, $R = \{(a,b): a-b \text{ is an integer}\}$ $Q \rightarrow \text{set of rational number}$ $(i) \text{ for any } a \in Q, a-a=0 \text{ which is an integer}$ $\therefore (a,a) \in R$ $(ii) \text{ let } (a,b) \in R$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow a-b \text{ is an integer}$ $\Rightarrow b-a=-m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ $(iii) \text{ let } (a,b) \in R \text{ and } (b,c) \in R$ $\Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z)$ $\text{Now, } (a-c)=(a-b)+(b-c)$ $=m+n \{\because \text{ sum of two integers is also an integer}\}$ $=integer$ $\therefore (a,c) \in R$ Q.4) If $A=(2,3)$ and $B=(1,2,3)$. Find the no. of relations. Sol.4) $A=(2,3)$ and $A=(2,3)$ Here $A=(3,3)$ Here $A=(3,3)$ Here $A=(3,3)$ Here $A=(3,3)$ Here $A=(3,3)$		b is an integer. Show that, (i) $(a, a) \in R$ for all $a \in Q$, (ii) $(a, b) \in R \Rightarrow (b, a) \in R$, (iii)
$Q \rightarrow \text{set of rational number} \\ \text{(i) for any } a \in Q, a-a=0 \text{ which is an integer} \\ & \therefore (a,a) \in R \\ \text{(ii) let } (a,b) \in R \\ & \Rightarrow a-b \text{ is an integer} \\ & \Rightarrow a-b=m \text{ where } m \in Z \\ & \Rightarrow b-a=-m \text{ which is also an integer} \\ & \Rightarrow (b,a) \in R \\ \text{(iii) let } (a,b) \in R \text{ and } (b,c) \in R \\ & \Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z) \\ & \text{Now, } (a-c)=(a-b)+(b-c) \\ & = m+n \text{ {$\cdot \cdot \cdot$ sum of two integers is also an integer}} \\ & = integer \\ & \therefore (a,c) \in R \\ \hline Q.4) \qquad \text{If } A=(2,3) \text{ and } B=(1,2,3). \text{ Find the no. of relations.} \\ & \text{Sol.4)} \qquad A=(2,3) \text{ and } B=(1,2,3) \\ & \text{Here } m=2 \text{ and } n=3 \\ \hline \end{cases}$		
(i) for any $a \in Q, a-a=0$ which is an integer $ \begin{array}{c} \therefore (a,a) \in R \\ (ii) \ \ \text{let} \ (a,b) \in R \\ \Rightarrow a-b \ \text{is an integer} \\ \Rightarrow a-b=m \ \text{where} \ m \in Z \\ \Rightarrow b-a=-m \ \text{which is also an integer} \\ \Rightarrow (b,a) \in R \\ (iii) \ \ \text{let} \ (a,b) \in R \ \text{and} \ (b,c) \in R \\ \Rightarrow a-b=m \ \text{and} \ b-c=n \ (\text{where} \ m,n \in Z) \\ \text{Now,} \ (a-c)=(a-b)+(b-c) \\ =m+n \ \{\because \ \text{sum of two integers is also an integer}\} \\ =integer \\ \therefore \ (a,c) \in R \\ \hline Q.4) \qquad \qquad \ \text{If} \ A=(2,3) \ \text{and} \ B=(1,2,3). \ \text{Find the no. of relations.} \\ \hline \text{Sol.4}) \qquad A=(2,3) \ \text{and} \ B=(1,2,3) \\ \text{Here} \ m=2 \ \text{and} \ n=3 \\ \hline \end{array}$	Sol.3)	
$ \begin{array}{c} \therefore (a,a) \in R \\ (\text{ii}) \text{ let } (a,b) \in R \\ \Rightarrow a-b \text{ is an integer} \\ \Rightarrow a-b=m \text{ where } m \in Z \\ \Rightarrow b-a=-m \text{ which is also an integer} \\ \Rightarrow (b,a) \in R \\ (\text{iii}) \text{ let } (a,b) \in R \text{ and } (b,c) \in R \\ \Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z) \\ \text{Now, } (a-c)=(a-b)+(b-c) \\ =m+n \{\because \text{ sum of two integers is also an integer}\} \\ =integer \\ \therefore (a,c) \in R \\ \hline \text{Q.4}) \qquad \text{If } A=(2,3) \text{ and } B=(1,2,3). \text{ Find the no. of relations.} \\ \text{Sol.4}) \qquad A=(2,3) \text{ and } B=(1,2,3) \\ \text{Here } m=2 \text{ and } n=3 \\ \end{array} $		
(ii) let $(a,b) \in R$ $\Rightarrow a-b$ is an integer $\Rightarrow a-b=m$ where $m \in Z$ $\Rightarrow b-a=-m$ which is also an integer $\Rightarrow (b,a) \in R$ (iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b=m$ and $b-c=n$ (where $m,n \in Z$) Now, $(a-c)=(a-b)+(b-c)$ $=m+n$ {: sum of two integers is also an integer} =integer $\therefore (a,c) \in R$ Q.4) If $A=(2,3)$ and $B=(1,2,3)$. Find the no. of relations. Sol.4) $A=(2,3)$ and $A=(1,2,3)$ Here $A=(2,3)$ and $A=(3,3)$ Here $A=(3,3)$ and $A=(3,3)$		
$\Rightarrow a-b \text{ is an integer}$ $\Rightarrow a-b=m \text{ where } m \in Z$ $\Rightarrow b-a=-m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ $(iii) \text{ let } (a,b) \in R \text{ and } (b,c) \in R$ $\Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z)$ $\text{Now, } (a-c)=(a-b)+(b-c)$ $= m+n \{\because \text{ sum of two integers is also an integer}\}$ $= integer$ $\therefore (a,c) \in R$ $Q.4) \qquad \text{If } A=(2,3) \text{ and } B=(1,2,3). \text{ Find the no. of relations.}$ $\text{Sol.4}) \qquad A=(2,3) \text{ and } B=(1,2,3)$ $\text{Here } m=2 \text{ and } n=3$		
$\Rightarrow a-b=m \text{ where } m \in Z$ $\Rightarrow b-a=-m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ $(iii) \text{ let } (a,b) \in R \text{ and } (b,c) \in R$ $\Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z)$ $\text{Now, } (a-c)=(a-b)+(b-c)$ $=m+n \{\because \text{ sum of two integers is also an integer}\}$ $=integer$ $\therefore (a,c) \in R$ $Q.4) \qquad \text{If } A=(2,3) \text{ and } B=(1,2,3). \text{ Find the no. of relations.}$ $\text{Sol.4}) \qquad A=(2,3) \text{ and } B=(1,2,3)$ $\text{Here } m=2 \text{ and } n=3$		
$\Rightarrow b-a=-m \text{ which is also an integer}$ $\Rightarrow (b,a) \in R$ $(iii) \text{ let } (a,b) \in R \text{ and } (b,c) \in R$ $\Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z)$ $\text{Now, } (a-c)=(a-b)+(b-c)$ $=m+n \{\because \text{ sum of two integers is also an integer}\}$ $=integer$ $\therefore (a,c) \in R$ $Q.4) \qquad \text{If } A=(2,3) \text{ and } B=(1,2,3). \text{ Find the no. of relations.}$ $\text{Sol.4}) \qquad A=(2,3) \text{ and } B=(1,2,3)$ $\text{Here } m=2 \text{ and } n=3$		
$\Rightarrow (b,a) \in R$ $(iii) \text{ let } (a,b) \in R \text{ and } (b,c) \in R$ $\Rightarrow a-b=m \text{ and } b-c=n \text{ (where } m,n \in Z)$ $\text{Now, } (a-c)=(a-b)+(b-c)$ $= m+n \{\because \text{ sum of two integers is also an integer}\}$ $= integer$ $\therefore (a,c) \in R$ $Q.4) \qquad \text{If } A=(2,3) \text{ and } B=(1,2,3). \text{ Find the no. of relations.}$ $Sol.4) \qquad A=(2,3) \text{ and } B=(1,2,3)$ $Here \ m=2 \text{ and } n=3$		
(iii) let $(a,b) \in R$ and $(b,c) \in R$ $\Rightarrow a-b=m$ and $b-c=n$ (where $m,n \in Z$) Now, $(a-c)=(a-b)+(b-c)$ $=m+n$ { \because sum of two integers is also an integer} =integer $\therefore (a,c) \in R$ Q.4) If $A=(2,3)$ and $B=(1,2,3)$. Find the no. of relations. Sol.4) $A=(2,3)$ and $A=(2,3)$ and $A=(2,3)$ Here $A=(2,3)$ and $A=(2,3)$		
$\Rightarrow a-b=m \ and \ b-c=n \ (\text{where} \ m,n\in Z)$ $\text{Now,} \ (a-c)=(a-b)+(b-c)$ $=m+n \ \{\because \text{ sum of two integers is also an integer}\}$ $=integer$ $\therefore (a,c)\in R$ $Q.4) \qquad \text{If } A=(2,3) \ \text{and } B=(1,2,3). \ \text{Find the no. of relations.}$ $Sol.4) \qquad A=(2,3) \ \text{and} \ B=(1,2,3)$ $Here \ m=2 \ \text{and} \ n=3$		```
Now, $(a-c)=(a-b)+(b-c)$ $= m+n \{\because \text{ sum of two integers is also an integer}\}$ $= integer$ $\therefore (a,c) \in R$ Q.4) If $A=(2,3)$ and $B=(1,2,3)$. Find the no. of relations. Sol.4) $A=(2,3)$ and $A=(1,2,3)$. Here $A=(2,3)$ and $A=(3,3)$. Here $A=(3,3)$ and $A=(3,3)$.		
$= m + n \ \{\because \text{ sum of two integers is also an integer}\}$ $= integer$ $\therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations. Sol.4) $A = (2,3) \text{ and } B = (1,2,3)$ Here $m = 2$ and $n = 3$		
$= integer \\ \therefore (a,c) \in R$ Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations. Sol.4) $A = (2,3)$ and $A = (1,2,3)$ Here $A = (2,3)$ and $A = (3,3)$ Here $A = (3$		
		,
Q.4) If $A = (2,3)$ and $B = (1,2,3)$. Find the no. of relations. Sol.4) $A = (2,3)$ and $B = (1,2,3)$ Here $m = 2$ and $n = 3$		
Sol.4) $A = (2,3)$ and $B = (1,2,3)$ Here $m = 2$ and $n = 3$	Q.4)	
Here $m=2$ and $n=3$	-	
	- ·/	
i l		
= 2 ^{2×3}		

Copyright © www.studiestoday.com

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$= 2^6 = 64$ ans.
Q.5)	If $A \times A$ has 9 elements, among which two are $(1,0)$ and $(0,1)$. Find Set A & remaining
	elements of $A \times A$
Sol.5)	Given, $n(A \times A) = 9$
,	$\Rightarrow n(A) = 3$
	Now, $(-1,0)$ and $(0,1) \in A \times A$
	\Rightarrow $-1,0 \in A \text{ and } 0.1 \in A$
	\Rightarrow -1,0.1 \in A
	Also $n(A) = 3$
	$\therefore A = \{-1,0,1\}$
0.6	$A \times A = \{(-1, -1), (-1, 0), (-1, 1), (0, 1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)\}$
Q.6)	$A \times A = \{(-1, -1), (-1, 0), (-1, 1), (0, 1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)\}$ Find the domain of $f(x) = \frac{1}{\sqrt{x- x }}$
	$\sqrt{x- x }$
Sol.6)	We have, $f(x) = \frac{1}{\sqrt{x- x }}$ $ x = \begin{cases} x: x \ge 0 \\ -x: x < 0 \end{cases}$ $- x = \begin{cases} -x: x \ge 0 \\ x: x < 0 \end{cases}$ $x - x = \begin{cases} x - x: x \ge 0 \\ x + x: x < 0 \end{cases}$ $\Rightarrow x - x = \begin{cases} 0: x \ge 0 \\ 2x: x < 0 \end{cases} \dots \dots (1)$
	$\sqrt{x- x }$
	$ x = \begin{cases} x: x \ge 0 \\ x: x \ge 0 \end{cases}$
	(-x: x < 0)
	$ - x = \begin{cases} x \cdot x < 0 \end{cases}$
	$- x = \begin{cases} -x : x \ge 0 \\ x : x < 0 \end{cases}$ $x - x = \begin{cases} x - x : x \ge 0 \\ x + x : x < 0 \end{cases}$ $\Rightarrow x - x = \begin{cases} 0 : x \ge 0 \\ 2x : x < 0 \end{cases} \dots \dots (1)$ But we have $f(x) = 1$
	(0: x + x: x < 0)
	$\Rightarrow x - x = \begin{cases} 3x = 0 & \dots \\ 2x : x < 0 & \dots \end{cases} $ (1)
	But we have, $f(x) = \frac{1}{x}$
	But we have, $f(x) = \frac{1}{\sqrt{x- x }}$
	$ \therefore x - x > 0$
	From (1) $x - x = 0$ or $x - x $ is $-ye$
	$\therefore \frac{1}{\sqrt{x- x }}$ does not take real values for
	∴ Domain = Ø
0.7)	1
Q.7)	Find the domain of $f(x) = \frac{1}{\sqrt{x-[x]}}$
Sol.7)	f(x) will be defined when $x - [x] > 0$
	We know, $0 \le x - [x] < 1$ for all $x \in R$
	But $x - [x] = 0$ for all $x \in Z$
	$\therefore x - [x] > 0 \text{ when } x \in R - Z$
	\therefore Domain $R-Z$ ans.
Q.8)	find the domain for which the functions $f(x) = 2x^2 - 1$ and $g(x) = 1 - 3x$ are equal
Sol.8)	we have, $f(x) = g(x)$
	$\Rightarrow 2x^2 - 1 = 1 - 3x$ $\Rightarrow 2x^2 + 3x - 2 = 0$
	$\Rightarrow 2x^2 + 3x - 2 = 0$ $\Rightarrow 2x^2 + 4x - x - 2 = 0$
	$ \Rightarrow 2x + 4x - x - 2 = 0 \Rightarrow 2x(x+2) - 1(x+2) = 0$
	$\Rightarrow (2x-1)(x+2) = 0$
	$\Rightarrow x = \frac{1}{2} \text{ or } x = -2$
	Domain all the values of x
	$\therefore Domain = \left\{\frac{1}{2}, -2\right\} ans.$
Q.9)	Redefine the function $f(x) = x-2 + 2+x $ where $-3 \le x \le 3$.
Sol.9)	Critical point of $ x-2 $ is 2
	Critical point of $ 2 + x $ is -2

Copyright © www.studiestoday.com

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	First arrange in ascending order
	$\therefore f(x) = 2+x + x-2 $
	There will be 3 cases: (i) when $-3 \le x < -2$, (ii) when $-2 \le x < 2$, (iii) when $2 < x \le 3$
	$\left(-(2+x) - (x-2): -3 \le x < -2\right)$
	$(2+x) + (x-2): 2 < x \le 3$
	$\begin{pmatrix} -2x: -3 \le x < -2 \\ 1 \le x \le 2 \end{pmatrix}$
	$f(x) = \begin{cases} 4: (x-2): -2 \le x < 2 \text{ ans.} \end{cases}$
Q.10)	$(2x:(x-2):2 < x \le 3)$
	$f(x) = \begin{cases} -(2+x) - (x-2) : -3 \le x < -2 \\ (2+x) - (x-2) : -2 \le x < 2 \\ (2+x) + (x-2) : 2 < x \le 3 \end{cases}$ $f(x) = \begin{cases} -2x : -3 \le x < -2 \\ 4 : (x-2) : -2 \le x < 2 \text{ ans.} \\ 2x : (x-2) : 2 < x \le 3 \end{cases}$ Find the Range of $f(x) = \frac{1}{1-2\cos x}$
Sol.10)	we have, $-1 \le 2 \cos x \le 1$
	$-2 \le 2\cos x \le 2$
	$2 \ge -2\cos x \ge -2$
	$3 \ge 1 - 2\cos x \ge -1$
	$\Rightarrow \frac{1}{3} \leq \frac{1}{1 - 2\cos x} \leq \frac{1}{1}$
	$\Rightarrow \frac{1}{3} \le \frac{1}{1 - 2\cos x} \le \frac{-1}{1}$ $\Rightarrow \frac{1}{3} \le f(x) \le \frac{-1}{1}$
	$\Rightarrow f(x) \le -1 \text{ or } f(x) \ge \frac{1}{3}$
	$x \in [-00, -1] \cup \left[\frac{1}{3}, 00\right]$ ans.
	M. Silldiestoday.
	20,
	XO