

Q.11)	Find the domain of $f(x) = \frac{1}{\sqrt{1-\cos x}}$
	1 - 0000
Sol.11)	$f(x)$ will be defined when $1 - \cos x > 0$ for all $x \in R - 1 \le \cos x \le 1$
	But $\cos x$ cannot equal to 1
	Since, $1 - \cos x > 0$ and $\cos x = 1$ when $x = 2n\pi$ (by general solution method
	$\therefore \text{ Domain } = R - \{2n\pi; n \in Z\} \text{ ans.}$
0.13\	Let $f = \{(2,4), (5,6), (8,-1), (10,-3)\}$
Q.12)	$g = \{(2,5), (7,1), (8,4), (10,13), (11,-5)\}.$ Find the domain of $f + g, f - g \& fg$.
Sol.12)	Domain of f is $D_f = \{2,5,8,10\}$
301.12)	Domain of g is $D_q = \{2,7,8,10,11\}$
	Domain of $f + g$, $f - g \& fg$ is always defined as
	Domain of $\{x: x \in D_f \cap D_q\}$
	∴ Domain of $f + g$, $f - g \& fg = \{2,8,10\}$ ans.
Q.13)	Draw the graph of $f(x) = 1 + x - 2 $
Sol.13)	We have, $f(x) = 1 + [x - 2]$
301.13)	(1 + (x - 2); x - 2 > 0; x > 2)
	$f(x) = \begin{cases} 1 + (x - 2) & x = 2 \\ 1 - (x - 2) & x = 2 \end{cases}$
	$f(x) = \begin{cases} x - 1 : x \ge 2 \end{cases}$
	$f(x) = \begin{cases} 1 + (x - 2) : x - 2 \ge 0 : x \ge 2 \\ 1 - (x - 2) : x - 2 < 0 : x < 2 \end{cases}$ $f(x) = \begin{cases} x - 1 : x \ge 2 \\ -x + 1 : x < 2 \end{cases}$
	Points (0,3), (1,2), (2,0), (3,2), (-1,4), (4,3)
	7 1
	7
	+×,
	1101, 2345
	-1
	Domain = R
	Range = [1,00]
Q.14)	Let R be the relation on Set N (natural no.s) defined by R (roster form), domain, Range,
Q.1+)	Co-domain and allow diagram.
Sol.14)	We have, Relation from N to N
301.14)	$R = \{(a, b): a + 3b = 12; a \in N \text{ and } b \in N\}$
	(i) $R = \{(9,1), (6,2), (3,3)\}$
	(ii) Domain = $\{9,6,3\}$
	(iii) Range = $\{1,2,3\}$
	(iv) Co-domain = N
	(v) Arrow diagram : FIG 14
Q.15)	Let $A = \{1,2,3,4,6\}$, Let R is a relation on A defined by $R =$
	$\{(a,b): b \text{ is exactly divisible by } a\}$. Find R, domain, Range, Co-domain and Arrow
	diagram.
Sol.15)	We have, relation from A to A
	$R = \{(a, b): b \text{ is exactly divisible by } a; a \in A, b \in A\}$
	(i) $R = \{(1,1), (2,2), (3,3), (4,4), (6,6), (1,2), (1,4), (1,6), (2,4), (2,6), (3,6)\}$
	(ii) Domain = {1,2,3,4,6}
	(iii) Range = {1,2,3,4,6}
	(iv) Co-domain = A
	(v) Arrow diagram:

Copyright © www.studiestoday.com

	A A A A A A A A A A A A A A A A A A A
Q.16)	Given Arrow diagram. Find relation in set builder & Roster form also find Domain, Range, co-domain.
Sol.16)	$R = \{(25,5), (25,-5), (9,3), (9,-3), (4,2), (4,-2)\}$ Clearly $25 = 5^2$, $25 = (-5^2)$, $9 = 3^2$ and so on $\therefore R = \{(x,y): x = y^2; x \in P \text{ and } y = Q\}$ Domain = $\{25,9,4\}$ Range = $\{5,-5,3,-3,2,-2\}$ Co-domain = $Q = \{-2,5,4,-5,2,3,-3,2\}$
Q.17)	find the domain of the function, $f(x) = \sqrt{x-3-2\sqrt{x-4}} - \sqrt{x-3+2\sqrt{x-4}}$
Sol.17)	$f(x) \text{ is real for all values of } x \text{ such that} \\ x-3-2\sqrt{x-4} \ge 0; \ x-3+2\sqrt{x-4} \ge 0 \text{ and } x-4 \ge 0 \\ x-3 \ge 2\sqrt{x-4}; \ x-3 \ge -2\sqrt{x-4} \text{ and } x \ge 4 \\ \text{squaring} \\ \Rightarrow x^2-6x+9 \ge 4(x-4); \ x^2-6x+9 \ge 4(x-4) \text{ and } x \ge 4 \\ \Rightarrow x^2-10x+25 \ge 0; \ x^2-10x+25 \ge 0 \text{ and } x \ge 4 \\ \Rightarrow (x-5)^2 \ge 0; \ (x-5)^2 \ge 0 \text{ and } x \ge 4 \\ \Rightarrow x-5 \ge 0; \ x-5 \ge 0 \text{ and } x \ge 4 \\ \Rightarrow x \ge 5; \text{ and } x \ge 4 \\ \therefore \text{ Domain } x \in [5,00] \text{ ans.}$
Q.18)	Find the domain of the function, $f(x) = \sqrt{\frac{x+3}{(2-x)(x-5)}}$
Sol.18	$f(x)$ is real for all values of x such that $\frac{x+3}{(2-x)(x-5)} \ge 0 \text{ and } (2-x)(x-5) \ne 0$ $\Rightarrow \frac{(x+3)}{(x-2)(x-5)} \le 0 \text{ and } x \ne 2 \text{ and } x \ne 5 \dots \{sign change\}$ $\Rightarrow \frac{(x+3)(x-2)(x-5)}{(x-2)^2(x-5)^2} \le 0 \dots \{multiply \& divide by (x-2)(x-5)\}$ $\Rightarrow (x+3)(x-2)(x-5) \le 0$

Copyright © www.studiestoday.com

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$x \in [-00, -3] \cup [2,5]$ but $x \neq 2$ and $x \neq 5$	
	∴ Domain is $x \in [-00, -3] \cup [2,5]$ ans.	
Q.19)	(1-x:x<0	
	$f(x) = \{ 1: x = 0 \text{ draw graph of } f(x). \}$	
	(x+1:x>0	
Sol.19)	$\therefore \text{ Domain is } x \in [-00, -3] \cup [2,5] \text{ ans.}$ $f(x) = \begin{cases} 1 - x \colon x < 0 \\ 1 \colon x = 0 \text{draw graph of } f(x). \\ x + 1 \colon x > 0 \end{cases}$ $\text{For } x < 0; f(x) = 1 - x$	
	Points $(-1,2)$, $(-2,3)$, $(-3,4)$	
	For $x > 0$; $f(x) = x + 1$	
	Points (1,2), (2,3), (3,4)	
	For $x = 0$; $f(x) = 1$	
	Points (0,1)	
Q.20)	Find the domain of the function, $f(x) = \frac{1}{\sqrt{ x ^2 - x - 6}}$.	
	Λε3 ε3	
Sol.20)	We have, $f(x) = \frac{1}{\sqrt{ x ^2 - x - 6}}$	
	$f(x)$ will be defined when $[x]^2 - [x] - 6 > 0$	
	Splitting middle term	
	$\Rightarrow [x]^2 - 3[x] + 2[x] - 6 > 0$	
	$\Rightarrow ([x] - 3[x] + 2[x] - 0 > 0$ \Rightarrow ([x] - 3)([x] + 2) > 0	
	x < -2 or x > 3	
	$\Rightarrow x < -2 \text{ or } x \ge 4$	
	$x \in (-00, -2) \cup (4,00)$ ans.	
	x C (00, 2) 0 (1,00) uns.	
	7(0)	
~0~		
an studies to day		
	*	