	MATHEMATICAL INDUCTION(PMI) Class XI
	TYPE: DIVISIBILITY
Q.1)	By principle of mathematical induction show that $3^{2 n+2}-8 n-9$ is divisible by 8 for all $n \in$ N.
Sol.1)	Let $P(n): 3^{2 n+2}-8 n-9$ (i)let $P(1): 3^{2+2}-8 n-9=3^{4}-17=64$ which is divisible by 8 $\therefore P(1)$ is true. (ii) let $P(k): 3^{2 k+2}-8 k-9=8 m$ where $m \in N$ (iii) To prove $P(k+1)$ is true $\begin{aligned} P(k+1) & : 3^{2(k+1)}-8(k+1)-9 \\ & =3^{2 k+4}-8 k-17 \\ & =3^{2 k+2} \cdot 3^{2}-8 k-17 \\ & =[8 m+8 k+9] .9-8 k-17 \ldots \ldots . . .\{\text { from } P(k)\} \\ & =72 m+72 k+81-8 k-17 \\ & =72 m+64 k+64 \\ & =8(9+8 k+8) \text { which is divisible by } 8 \end{aligned}$ \therefore by principle of Mathematical Induction $P(n)$ is true for all $n \in N$.
Q.2)	Prove by PMI, $3^{2 n}$ when divided by 8 , the remainder is always $1 .{ }^{*}$
Sol.2)	Let $P(n): 3^{2 n}$ when divided by 8 leaves remainder 1 (i) let $P(1): 3^{2}=9=8+1$ Clearly $\mathrm{P}(1)$ is true. (ii) let $P(k)$ be true $P(k): 3^{2 k}=8 m+1 \ldots \ldots \ldots .\{m \in N\}$ (iii) To prove $P(k+1)$ is true $\begin{aligned} P(k+1) & : 3^{2(k+2)} \\ & =3^{2 k} \cdot 3^{2} \\ & =(8 m+1) .9 \ldots\{\text { from } P(k)\} \\ & =72 m+9 \\ & =8(9 m+1)+1 \text { clearly it leaves remainder } 1 \text { when divided by } 8 \end{aligned}$ $\therefore P(k+1)$ is true \therefore by PMI $P(n)$ is true for all $n \in N$.
Q.3)	By PMI, show $x^{2 n}-y^{2 n}$ is divisible by $x+y$.
Sol.3)	$P(n): x^{2 n}-y^{2 n}$ is divisible by $x+y$ (i) $P(1): x^{2}-y^{2}$ $=(x+y)(x-y) \text { clearly it is divisible by } x+y$ $\therefore P(1)$ is true (ii) let $P(k)$ be true i.e, $P(k): x^{2 k}-y^{2 k}=(x+y) m \ldots \ldots . . .\{m \in N\}$ (iii) To prove $P(k+1)$ is true $\begin{aligned} & \begin{aligned} P(k+1) & : x^{2 k+2}-y^{2 k+2} \\ & =x^{2 k} \cdot x^{2}-y^{2 k} \cdot y^{2} \\ & =\left[(x+y) m+y^{2 k}\right] x^{2}-y^{2 k} \cdot y^{2} \ldots \ldots \ldots . .\{\text { from }(1)\} \\ & =(x+y) m x^{2}+y^{2 k} \cdot x^{2}-y^{2 k} \cdot y^{2} \\ & =(x+y) m x^{2}+y^{2 k}\left(x^{2}-y^{2}\right) \\ & =(x+y)\left[m x^{2}+y^{2 k}(x-y)\right] \text { clearly it is divisible by }(x+y) \end{aligned} \\ & \therefore P(k+1) \text { is true } \end{aligned}$

StudiesToday

	\therefore by PMI $P(n)$ is true for all $n \in N$.
Q.4)	Show by PMI, $11^{n-12}+12^{2 n+1}$ is multiple of 133 .
Sol.4)	Let $P(n): 11^{n-12}+12^{2 n+1}$ (i) $P(1): 11^{3}+12^{3}$ $=1331+1728=3059=23 \times 133 \text { which is divisible } 133$ Clearly, $P(1)$ is true (ii) let $P(k)$ be true $P(k): 11^{k+2}-12^{2 k+1}=133 m \ldots \ldots \ldots . . m \in N$ (iii) To prove $P(k+1)$ is true $\begin{aligned} P(k+1) & : 11^{k+3}-12^{2 k+3} \\ & =11^{k+2} \cdot 11+12^{2 k+1} \cdot 12^{2} \\ & =(133 m-12) \cdot 11+12^{2 k+1} \cdot 144 \\ & =133 m \times 11-12^{2 k+1} \cdot 11+12^{2 k+1} \cdot 144 \\ & =133 m \times 11+12^{2 k+1}(144-11) \\ & =133 m \times 11+12^{2 k+1} \cdot 133 \\ & =133\left[11 m+12^{2 k+1}\right] \text { which is divisible by } 133 \end{aligned}$ $\therefore P(k+1)$ is true \therefore by PMI $P(n)$ is true for all $n \in N$.
Q.5)	By PMI, show that $2.7^{n}+3.5^{n}-5$ is divisible by 24.
Sol.5)	Let $P(n): 2.7^{n}+3.5^{n}-5$ is divisible by 24 $\text { (i) } \begin{aligned} P(1): & 2.7+3.5-5 \\ & =14+15-5=24 \text { which is divisible by } 24 \end{aligned}$

$\therefore P(1)$ is true
(ii) let $P(k)$ be true
$P(k): 2.7^{k}+3.5^{k}-5=24 m$ \qquad $m \in N$
(iii) To prove $P(k+1)$ is true
$P(k+1): 2.7^{k+1}+3.5^{k+1}-5$

$$
\begin{aligned}
& =2.7^{k} \cdot 7+3.5^{k} \cdot 5-5 \\
& =\left(24 m-3.5^{k}+5\right) \cdot 7+15.5^{k}-5 \\
& =24 m \times 7-21.5^{k}+35+15.5^{k}-5 \\
& =24 m \times 7+30-6.5^{k} \\
& =24 m \times 7-6\left(5^{k}-5\right)
\end{aligned}
$$

Now, $\left(5^{k}-5\right)$ is always divisible / multiple of 4 for all values of $k \in N$
e.g., $k=1: 5^{1}-5=0,4 \times 0$
$k=2: 5^{2}-5=25-5=20=4 \times 5$
$k=3: 5^{3}-5=125-5=120$ and so on
Clearly for all values $k, 5^{k}-5$ is always divisible by 24
$P(k+1): 24 m \times 7-6(4 p)$.......... Where $p \in N$
$=24(7 m-p)$ which is divisible by 24
$\therefore P(k+1)$ is true
\therefore by PMI $P(n)$ is true for all $n \in N$.
Q.6) Show by PMI, $n(n+1)(n+5)$ is multiple of 3 .

Sol.6) Let $P(n): n(n+1)(n+5)$ is multiple of 3
(i) $P(1)=1(1+1)(1+5)=(2)(6)=12$ which is multiple of 3
$\therefore P(1)$ is true
(ii) let $P(k)$ be true
$P(k): k(k+1)(k+5)=3 m$ $m \in N$

StudiesToday

	$\begin{align*} & \Rightarrow P(k): k\left(k^{2}+6 k+5\right)=3 m \\ & \Rightarrow P(k): k^{3}+6 k^{2}+5 k=3 m \tag{1} \end{align*}$ (ii) To prove $P(k+1)$ is true $\begin{aligned} P(k+1) & :(k+1)(k+2)(k+6) \\ & =(k+1)\left(k^{2}+8 k+12\right) \\ & =k^{3}+8 k^{2}+12 k+k^{2}+8 k+12 \\ & =k^{3}+9 k^{2}+20 k+12 \\ & =\left(k^{3}+6 k^{2}+5 k\right)+(15 k+12) \\ & =3 m+15 k+12 ~\{f r o m \\ & =3(m+5 k+4) \text { which is a multiple of } 4 \end{aligned}$ $\therefore P(k+1)$ is true \therefore by PMI $P(n)$ is true for all $n \in N$.
Q.7)	Prove by induction that the sum of the cubes of the consecutive natural numbers is divisible by 9.
Sol.7)	Let three consecutive natural no.s are $n,(n+1),(n+2)$ Let $P(n): n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 (i) $P(1): 1^{3}+(1+1)^{3}+(1+2)^{3}=1+8+27=36$ which is divisible by 9 $\therefore P(1)$ is true (ii) let $P(k)$ be true i.e., $P(k): k^{3}+(k+1)^{3}+(k+2)^{3}=9 m$ \qquad $m \in N$ (OR) $P(k): 3 k^{3}+9 k^{2}+15 k+9=9 m$ $\begin{aligned} & \text { (iii) To prove } P(k+1) \text { is true } \\ & \begin{aligned} P(k+1) & :(k+1)^{3}+(k+2)^{3}+(k+3)^{3} \\ & =k^{3}+3 k^{2}+3 k+1+k^{3}+8 k^{2}+12 k+8+k^{3}+9 k^{2}+27 k+27 \\ & =3 k^{3}+18 k^{2}+42 k+36 \\ & =\left(3 k^{3}+9 k^{2}+15 k+9\right)+\left(9 k^{2}+27 k+27\right) \\ & =9 m+9 k^{2}+27 k+27 . \ldots\{\text { from }(1)\} \\ & =9\left(m+k^{2}+3 k+3\right) \text { which is divisible by } 9 \end{aligned} \end{aligned}$ $\therefore P(k+1)$ is true \therefore by PMI $P(n)$ is true for all $n \in N$.

