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MATHEMATICAL INDUCTION(PMI)
Class XI

TYPE: DIVISIBILITY
Q.1) | By principle of mathematical induction show that 322 — 8n — 9 is divisible by 8 for alln €
N.
Sol.1) | Let P(n): 32"*2 —8n—9
(iMet P(1):3%72 — 8n — 9 = 3* — 17 = 64 which is divisible by 8
~ P(1) is true.
(i) let P(k): 3%k*2 — 8k — 9 = 8m wherem € N
(iii) To prove P(k + 1) is true
P(k+1):320+D _8(k4+1) -9
= 32k+4 _ 8k — 17
= 32k+2.32 _ 8k — 17
= [8m+8k+9].9 -8k —17 .......... {from P(k)}
=72m+ 72k +81 -8k —17
=72m + 64k + 64
= 8(9 + 8k + 8) which is divisible by 8
=~ by principle of Mathematical Induction P(n) is true for all n € N.
Q.2) | Prove by PMI, 3™ when divided by 8, the remainder is always 1.
Sol.2) | Let P(n): 3%™ when divided by 8 leaves remainder 1
(i)let P(1):32=9=8+1
Clearly P(1) is true.
(ii) let P(k) be true
P(k):3%* =8m+1 .. {m € N}
(iii) To prove P(k + 1) is true
P(k + 1): 32(k+2)
— 32k_ 32
= (8m+ 1).9..... {from P(k)}
=72m+9
= 8(9m + 1) + clearly it leaves remainder 1 when divided by 8
~ P(k + 1) istrue
~ by PMI P(n) is true foralln € N.
Q.3) | By PMI, show x2* =y2" s divisible by x + .
Sol.3) | P(n): x2™ —92™is divisible by x + y
(i) P(1):x2 — y?
= (x + y)(x — y) clearly it is divisible by x + y
~ P(1) is true
(ii) let P(k) be true
i.e, P(k):x%k —y2k = (x + y)m ......... {m € N}
(iii) To prove P(k + 1) is true
P(k + 1) x2k+2 _ y2k+2
= x2k x2 — 2k 2
= [(x + y)m + y?¥x? — y2k . y2 ... {from (1)}
(x + y)mx? + y?k. x? — y2k y2
= (x +yI)mx? +y**(x* - y?)
= (x + y)[mx? + y**(x — y)] clearly it is divisible by (x + y)
~P(k+ 1)istrue
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~ by PMI P(n) is true foralln € N.
Q.4) | Show by PMI, 11712 4+ 122™+1 js multiple of 133.
Sol.4) | Let P(n): 1112 4 122n+1
(i) P(1): 113 + 123
= 1331+ 1728 = 3059 = 23 x 133 which is divisible 133
Clearly, P(1) is true
(ii) let P(k) be true
P(k): 11%+2 — 122k+1 = 133m ......... meN
(iii) To prove P(k + 1) is true
P(k +1): 11%+3 — 122k+3
= 11F+2,11 + 122k+1, 122
(133m — 12).11 + 122k*+1, 144
=133m x 11 — 122F+1 11 + 122k+1 144
=133m x 11 + 122k+1(144 — 11)
=133m x 11 + 122k+1,133
= 133[11m + 122¥+1] which is divisible by 133
~P(k+1)istrue
~ by PMI P(n) is true foralln € N.
Q.5) | By PMI, show that 2.7™ + 3.5™ — 5 is divisible by 24.
Sol.5) | Let P(n):2.7™ + 3.5™ — 5 is divisible by 24
() P(1):2.7+35—=5
= 14 4+ 15 — 5 = 24 which is divisible by 24
~ P(1)is true
(ii) let P(k) be true
P(k):2.7% + 3.5 — 5 = 24m........ meN
(iii) To prove P(k + 1) is true
P(k +1):2.7%1 + 35k+1 _5
2.7%.7 + 3.5¥.5 =5
(24m —3.5% +5).7 4+ 155 — 5
=24m x 7 — 215 ¥ 35+ 15.5k -5
=24m x 7 +30= 6.5%
= 24m x 7.— 6(5% — 5)
Now, (5" — 5) isialways divisible / multiple of 4 for all values of k € N
eg, k=1:52-5=04x0
k=2:52-5=25-5=20= 4x5
k=3:53—5=125—-5= 120 and so on
Clearly for all values k, 5% — 5 is always divisible by 24
P(k+1):24m x 7 — 6(4p) .......... Wherep € N
= 24(7m — p) which is divisible by 24
~P(k+ 1)istrue
~ by PMI P(n) is true foralln € N.
Q.6) | Show by PMI, n(n + 1)(n + 5) is multiple of 3.
Sol.6) | Let P(n):n(n + 1)(n + 5) is multiple of 3
HHP(1) =11+ 1)1 +5) = (2)(6) = 12 which is multiple of 3
~ P(1) is true
(ii) let P(k) be true
P(k):k(k+ 1)(k+5) =3m...... meN
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=>P(k):k(k? + 6k +5) =3m
= P(k):k® + 6k? + 5k = 3m .......... (1)
(ii) To prove P(k + 1) is true
P(k+1):(k+1(k+2)(k+6)
(k+1)(k? + 8k +12)
k3 +8k? + 12k + k? + 8k + 12
k3 + 9k? + 20k + 12
= (k3 + 6k? + 5k) + (15k + 12)
=3m+ 15k + 12 ............... {from (1)}
= 3(m + 5k + 4) which is a multiple of 4
~ P(k + 1) istrue
~ by PMI P(n) is true for alln € N.
Q.7) | Prove by induction that the sum of the cubes of the consecutive natural numbers is divisible
by 9.
Sol.7) | Let three consecutive natural no.saren,(n + 1), (n + 2)
Let P(n):n3 + (n+ 1)3 + (n + 2)3 is divisible by 9
(MP():13+ (1 + 13+ (1+2)%=1+8+ 27 = 36 which is divisible by 9
~ P(1)is true
(ii) let P(k) be true
e, P(k):k3+(k+1)3+(k+2)2=9m.... meN
(OR) P(k):3k® +9k? + 15k + 9 = 9m
(iii) To prove P(k + 1) is true
Plk+1):(k+1)3+ (k+2)3+ (k+3)3
= k3 +3k?+3k+1+k3+8k%+12k + 8 + k3 + 9k? + 27k + 27
= 3k3+ 18k? + 42k + 36
= (3k3 4+ 9k? + 15k + 9) +(9%k%+ 27k + 27)
=9m + 9k? + 27k + 27 ek, {from (1)}
= 9(m + k? + 3k + 3)which is divisible by 9
~P(k+ 1)istrue
= by PMI P(n) is true for all n.€ N.
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