
www.st
ud

ies
tod

ay
.co

m

 MATHEMATICAL INDUCTION(PMI) 
Class XI 

 

 TYPE: DIVISIBILITY  

Q.1) By principle of mathematical induction show that 32𝑛+2 − 8𝑛 − 9 is divisible by 8 for all 𝑛 ∈
𝑁. 

 

Sol.1) Let 𝑃(𝑛): 32𝑛+2 − 8𝑛 − 9 
(i)let 𝑃(1): 32+2 − 8𝑛 − 9 = 34 − 17 = 64 which is divisible by 8 
∴ 𝑃(1) is true. 

(ii) let 𝑃(𝑘): 32𝑘+2 − 8𝑘 − 9 = 8𝑚 where 𝑚 ∈ 𝑁 
(iii) To prove 𝑃(𝑘 + 1) is true 

𝑃(𝑘 + 1): 32(𝑘+1) − 8(𝑘 + 1) − 9 
 =  32𝑘+4 − 8𝑘 − 17 
 =  32𝑘+2. 32 − 8𝑘 − 17 
 =  [8𝑚 + 8𝑘 + 9]. 9 − 8𝑘 − 17 ………. {𝑓𝑟𝑜𝑚 𝑃(𝑘)} 
 = 72𝑚 + 72𝑘 + 81 − 8𝑘 − 17 
 = 72𝑚 + 64𝑘 + 64 
 = 8(9 + 8𝑘 + 8) which is divisible by 8 

∴ by principle of Mathematical Induction 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁. 

 

Q.2) Prove by PMI, 32𝑛 when divided by 8, the remainder is always 1.  

Sol.2) Let 𝑃(𝑛): 32𝑛 when divided by 8 leaves remainder 1 
(i) let 𝑃(1): 32 = 9 = 8 + 1 

Clearly P(1) is true. 
(ii) let 𝑃(𝑘) be true 

𝑃(𝑘): 32𝑘 = 8𝑚 + 1 ……… {𝑚 ∈ 𝑁} 
(iii) To prove 𝑃(𝑘 + 1) is true 

𝑃(𝑘 + 1): 32(𝑘+2) 
 = 32𝑘 . 32 
 =  (8𝑚 + 1). 9………. {𝑓𝑟𝑜𝑚 𝑃(𝑘)} 
 = 72𝑚 + 9 
 = 8(9𝑚 + 1) + 1 clearly it leaves remainder 1 when divided by 8 

∴ 𝑃(𝑘 + 1) is true 
∴ by PMI 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁. 

 

Q.3) By PMI, show 𝑥2𝑛 − 𝑦2𝑛 is divisible by 𝑥 + 𝑦.  

Sol.3) 𝑃(𝑛): 𝑥2𝑛 − 𝑦2𝑛 is divisible by 𝑥 + 𝑦 
(i) 𝑃(1): 𝑥2 − 𝑦2 

 =  (𝑥 + 𝑦)(𝑥 − 𝑦) clearly it is divisible by 𝑥 + 𝑦 
∴ 𝑃(1) is true 
(ii) let 𝑃(𝑘) be true 

i.e, 𝑃(𝑘): 𝑥2𝑘 − 𝑦2𝑘 = (𝑥 + 𝑦)𝑚 ……… {𝑚 ∈ 𝑁} 
(iii) To prove 𝑃(𝑘 + 1) is true 

𝑃(𝑘 + 1): 𝑥2𝑘+2 − 𝑦2𝑘+2 
 = 𝑥2𝑘 . 𝑥2 − 𝑦2𝑘 . 𝑦2 
 =  [(𝑥 + 𝑦)𝑚 + 𝑦2𝑘]𝑥2 − 𝑦2𝑘 . 𝑦2………. {𝑓𝑟𝑜𝑚 (1)} 

 =  (𝑥 + 𝑦)𝑚𝑥2 + 𝑦2𝑘 . 𝑥2 − 𝑦2𝑘 . 𝑦2 
 =  (𝑥 + 𝑦)𝑚𝑥2 + 𝑦2𝑘(𝑥2 − 𝑦2)  
=  (𝑥 + 𝑦)[𝑚𝑥2 + 𝑦2𝑘(𝑥 − 𝑦)]  clearly it is divisible by (𝑥 + 𝑦) 

∴ 𝑃(𝑘 + 1) is true 
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∴ by PMI 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁. 

Q.4) Show by PMI, 11𝑛−12 + 122𝑛+1 is multiple of 133.  

Sol.4) Let 𝑃(𝑛): 11𝑛−12 + 122𝑛+1 
(i) 𝑃(1): 113 + 123 

 = 1331 + 1728 = 3059 = 23 × 133 which is divisible 133 
Clearly, 𝑃(1) is true 
(ii) let 𝑃(𝑘) be true 

𝑃(𝑘): 11𝑘+2 − 122𝑘+1 = 133𝑚 ……… 𝑚 ∈ 𝑁 
(iii) To prove 𝑃(𝑘 + 1) is true 

𝑃(𝑘 + 1): 11𝑘+3 − 122𝑘+3 
 =  11𝑘+2. 11 + 122𝑘+1. 122 
 =  (133𝑚 − 12). 11 + 122𝑘+1. 144 
 = 133𝑚 × 11 − 122𝑘+1. 11 + 122𝑘+1. 144 
 = 133𝑚 × 11 + 122𝑘+1(144 − 11) 
 = 133𝑚 × 11 + 122𝑘+1. 133 
 = 133[11𝑚 + 122𝑘+1] which is divisible by 133 

∴ 𝑃(𝑘 + 1) is true 
∴ by PMI 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁. 

 

Q.5) By PMI, show that 2.7𝑛 + 3.5𝑛 − 5 is divisible by 24.  

Sol.5)  Let 𝑃(𝑛): 2.7𝑛 + 3.5𝑛 − 5 is divisible by 24 
(i) 𝑃(1): 2.7 + 3.5 − 5 

 = 14 + 15 − 5 = 24 which is divisible by 24 
∴ 𝑃(1) is true 
(ii) let 𝑃(𝑘) be true 

𝑃(𝑘): 2.7𝑘 + 3.5𝑘 − 5 = 24𝑚……… 𝑚 ∈ 𝑁 
(iii) To prove 𝑃(𝑘 + 1) is true 

𝑃(𝑘 + 1): 2.7𝑘+1 + 3.5𝑘+1 − 5 
 =  2.7𝑘 . 7 + 3.5𝑘 . 5 − 5 

 =  (24𝑚 − 3.5𝑘 + 5). 7 + 15.5𝑘 − 5 

 = 24𝑚 × 7 − 21.5𝑘 + 35 + 15.5𝑘 − 5 
 = 24𝑚 × 7 + 30 − 6. 5𝑘 

 = 24𝑚 × 7 − 6(5𝑘 − 5) 

Now, (5𝑘 − 5) is always divisible / multiple of 4 for all values of 𝑘 ∈ 𝑁 

e.g., 𝑘 = 1: 51 − 5 = 0,4 × 0 
𝑘 = 2: 52 − 5 = 25 − 5 = 20 =  4 × 5 
𝑘 = 3: 53 − 5 = 125 − 5 = 120 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 
Clearly for all values 𝑘, 5𝑘 − 5 is always divisible by 24 
𝑃(𝑘 + 1): 24𝑚 × 7 − 6(4𝑝) ………. Where 𝑝 ∈ 𝑁 

 = 24(7𝑚 − 𝑝) which is divisible by 24 
∴ 𝑃(𝑘 + 1) is true 
∴ by PMI 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁.  

 

Q.6) Show by PMI, 𝑛(𝑛 + 1)(𝑛 + 5) is multiple of 3.  

Sol.6) Let 𝑃(𝑛): 𝑛(𝑛 + 1)(𝑛 + 5) is multiple of 3 
(i) 𝑃(1) = 1(1 + 1)(1 + 5) = (2)(6) = 12 which is multiple of 3 
∴ 𝑃(1) is true 
(ii) let 𝑃(𝑘) be true 
𝑃(𝑘): 𝑘(𝑘 + 1)(𝑘 + 5) = 3𝑚……… 𝑚 ∈ 𝑁 
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⇒ 𝑃(𝑘): 𝑘(𝑘2 + 6𝑘 + 5) = 3𝑚 
⇒ 𝑃(𝑘): 𝑘3 + 6𝑘2 + 5𝑘 = 3𝑚 ………. (1) 
(ii) To prove 𝑃(𝑘 + 1) is true 
𝑃(𝑘 + 1): (𝑘 + 1)(𝑘 + 2)(𝑘 + 6) 

 =  (𝑘 + 1)(𝑘2 + 8𝑘 + 12) 
 =  𝑘3 + 8𝑘2 + 12𝑘 + 𝑘2 + 8𝑘 + 12 
 =  𝑘3 + 9𝑘2 + 20𝑘 + 12 
 = (𝑘3 + 6𝑘2 + 5𝑘) + (15𝑘 + 12) 
 = 3𝑚 + 15𝑘 + 12 …………… {𝑓𝑟𝑜𝑚 (1)} 
 = 3(𝑚 + 5𝑘 + 4) which is a multiple of 4 

∴ 𝑃(𝑘 + 1) is true 
∴ by PMI 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁. 

Q.7) Prove by induction that the sum of the cubes of the consecutive natural numbers is divisible 
by 9. 

 

Sol.7) Let three consecutive natural no.s are 𝑛, (𝑛 + 1), (𝑛 + 2) 
Let 𝑃(𝑛): 𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3 is divisible by 9 
(i) 𝑃(1): 13 + (1 + 1)3 + (1 + 2)3 = 1 + 8 + 27 = 36 which is divisible by 9 
∴ 𝑃(1) is true 
(ii) let 𝑃(𝑘) be true 
i.e., 𝑃(𝑘): 𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3 = 9𝑚 ……… 𝑚 ∈ 𝑁 
(OR) 𝑃(𝑘): 3𝑘3 + 9𝑘2 + 15𝑘 + 9 = 9𝑚 
(iii) To prove 𝑃(𝑘 + 1) is true 
𝑃(𝑘 + 1): (𝑘 + 1)3 + (𝑘 + 2)3 + (𝑘 + 3)3 

  =  𝑘3 + 3𝑘2 + 3𝑘 + 1 + 𝑘3 + 8𝑘2 + 12𝑘 + 8 + 𝑘3 + 9𝑘2 + 27𝑘 + 27 
 =  3𝑘3 + 18𝑘2 + 42𝑘 + 36 
 = (3𝑘3 + 9𝑘2 + 15𝑘 + 9) + (9𝑘2 + 27𝑘 + 27) 
 = 9𝑚 + 9𝑘2 + 27𝑘 + 27 …………… {𝑓𝑟𝑜𝑚 (1)} 
 = 9(𝑚 + 𝑘2 + 3𝑘 + 3) which is divisible by 9 

∴ 𝑃(𝑘 + 1) is true 
∴ by PMI 𝑃(𝑛) is true for all 𝑛 ∈ 𝑁. 
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