BAL BHARATI PUBLIC SCHOOL
 Ganga Ram Hospital Marg, New Delhi-60

CLASS -XI
ASSIGNMENT-5

SUBJECT - MATHEMATICS TOPIC-MATHEMATICAL INDUCTION

Q1. Using principle of mathematical induction prove that $4^{n}+15 n-1$ is divisible by 9 for all natural numbers n.

Q2. Prove by induction that $4+8+12+$ \qquad $+4 n=2 n(n+1)$ for all natural numbers.

Q3. Prove by the principle of mathematical induction that for all $n \in N, n^{2}+n$ is even natural number.

Q4. Prove by induction that the sum of the cubes of three consecutive natural numbers is divisible by 9 .

Q5. Use Principle of Mathematical induction to prove :-
$1.3 .5+3.5 .7+\ldots(2 n-1)(2 n+1)(2 n+3)=n(n+2)\left(2 n^{2}+4 n-1\right)$

Q6. Prove that $5^{\mathrm{n}}-5$ is divisible by 4 for all $\mathrm{n} \in \mathrm{N}$. Hence prove that $\left(2.7^{\mathrm{n}}+3.5^{\mathrm{n}}-5\right)$ is divisible by 24 for all $\mathrm{n} \in \mathrm{N}$.

Q7. If $\mathrm{P}(\mathrm{n})$ is the statement $\mathrm{n}^{2}-\mathrm{n}+41$ is prime, prove that $\mathrm{P}(1), \mathrm{P}(2)$ and $\mathrm{P}(3)$ are true. Prove also that $\mathrm{P}(41)$ is not true.

Q8. Prove by mathematical induction that the inequality $2 n>2 n+1$ is true for all natural nos. $n>2$.

Q9. Prove by mathematical induction that $n(n+1)(2 n+1)$ is a multiple of 6 for all $n \in N$.

Q10. Use mathematical induction to prove that
$1.1!+2.2!+3.3$! \qquad $+n . n!=(n+1)!-1$ for all $n \in N$.

Q11. By the principle of Mathematical Induction, prove the following ;-
(i) $1+\frac{1}{2}+\frac{1}{2^{2}}+$ \qquad $+\frac{1}{2^{n-1}}=2-\frac{1}{2^{n-1}}$
(ii) $1.3+2.4+3.5$ \qquad $+\mathrm{n}(\mathrm{n}+2)=\underline{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+7)}$
(iii) $2+5+8+11+$ \qquad $+(3 n-1)=\frac{\mathrm{n}(3 \mathrm{n}+1)}{2}$
(iv) $1^{2}+3^{2}+5^{2}+$ \qquad $(2 \mathrm{n}-1)^{2}=\frac{\left(4 \mathrm{n}^{2}-1\right) \mathrm{n}}{3}$
(v) $a+(a+d)+(a+2 d)---+(a+(n-1) d)=\frac{n[2 a+(n-1) d]}{2}$

