CHAPTER 7

PERMUTATIONS (Arrangements) AND COMBINATIONS (selections)
In permutation order is important, since 27 \& 72 are different numbers(arrangements). In combination order is not important.

- Fundamental principle of counting (FPC)

Station A		Station B
	mays ways	Station C

then by FPC there are mn ways to go from station A to station C

- The number of permutations of n different things taken r at a time, where repetition is not allowed is given by ${ }^{\mathbf{n}} \mathbf{P}_{\mathbf{r}}=\mathbf{n}(\mathbf{n} \mathbf{- 1})(\mathbf{n}-\mathbf{2}) \ldots \ldots . .(\mathbf{n}-\mathbf{r}+\mathbf{1})$ where $0<r \leq n$.
eg

$$
\begin{aligned}
& { }^{5} \mathrm{P}_{2}=5 \times 4=20 \\
& { }^{7} \mathrm{P}_{3}=7 \times 6 \times 5=210
\end{aligned}
$$

- Factorial notation: $\mathbf{n}!=\mathbf{1} \times \mathbf{2} \times \mathbf{3 \times \ldots . .} \mathbf{x} \mathbf{n}$, where \mathbf{n} is a natural number eg $5!=1 \times 2 \times 3 \times 4 \times 5$
we define $0!=1$
also $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$!

$$
=n(n-1)(n-2)!
$$

- ${ }^{\mathrm{n}} \mathbf{P}_{\mathrm{r}}=$ _n! _ Where $0 \leq r \leq n$

$$
(\mathbf{n}-\mathbf{r})!
$$

- Number of permutations of n different things, taken r at a time, where repetition is allowed is $\mathbf{n}^{\mathbf{r}}$
- Number of permutations of n objects taken all at a time, where P_{1} objects are of first kind, P_{2} objects are of second kind..... P_{k} objects are of the $\mathrm{k}^{\text {th }}$ kind and rest, if any, are all different is \qquad (eg 9)

$$
\mathbf{P}_{1}!\cdot \mathbf{P}_{2}!\ldots \mathbf{P}_{\mathbf{k}}!
$$

- The number of combinations of n different things taken r at a time is given by

$$
\begin{aligned}
& { }^{n} \mathbf{C}_{\mathbf{r}}=\frac{\mathbf{n}(\mathbf{n}-\mathbf{1})(\mathbf{n}-\mathbf{2}) \ldots .(\mathbf{n}-\mathbf{r}+\mathbf{1}), \text {, }}{1.2 .3 \ldots \ldots . \mathbf{r}} \mathbf{0}<\mathbf{r} \leq \mathbf{n} \\
& \mathrm{eg}^{5} \mathrm{C}_{3}=\frac{5 \times 4 \times 3}{1 \times 2 \times 3}={ }^{5} \mathrm{C}_{2}
\end{aligned}
$$

- ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}$
eg ${ }^{5} \mathrm{C}_{3}={ }^{5} \mathrm{C}_{2}$
${ }^{7} \mathrm{C}_{5}={ }^{7} \mathrm{C}_{2}$
- ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\ldots$ n! , where $\mathbf{0} \leq \mathrm{r} \leq \mathrm{n}$. $\mathbf{r}!(\mathbf{n}-\mathbf{r})$!
- ${ }^{\mathbf{n}} \mathbf{C}_{\mathbf{r}}={ }^{\mathbf{n}} \mathbf{C}_{\mathrm{s}} \mathbf{i m p l i e s} \mathbf{r}=\mathbf{s}$ or $\mathbf{n}=\mathbf{r}+\mathbf{s}(\mathrm{eg} 17 *) 1$ mark
- ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0}=1$
- ${ }^{n} \mathrm{C}_{1}=\mathrm{n}$
eg ${ }^{5} \mathrm{C}_{1}=5$
- ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$

Ex 7.1

1, 2, 4
Ex 7.2
4* 5* * (1 mark)
eg 8^{*} (1 mark), eg $11^{*}, 12^{* *}, 13^{* *}, 14^{* *}, 16^{* *}$ (4 marks)

Ex 7.3

$7^{*}, 8^{*}, 9^{* *}, 10^{* *}, 11^{* *}$
Theorm 6 to prove (4 marks)*
eg 17* (1 mark) use direct formula $\mathrm{n}=9+8=17$ since ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{s}}$ implies r
$=\mathrm{s}$ or $\mathrm{n}=\mathrm{r}+\mathrm{s}$
eg 19**

Ex 7.4

$2 * *, 3^{*}, 5^{*}, 6^{*}, 7^{* *}, 8^{*}, 9^{*}$
eg 21**, eg 23*(HOT), eg 24*
Misc Ex
$1^{* *}, 2^{* *}, 3^{* *}, 4^{*}, 5^{*}, 7^{* *}, 10^{* *}, 11^{* *}$

EXTRA/HOT QUESTIONS

1) How many permutations can be made with letters of the word MATHEMATICS ? In how many of them vowels are together?
2) In how many ways can 9 examination papers be arranged so that the best and the worst papers are never together. (HOT)
3) How many numbers greater than 56000 can be formed by using the digits $4,5,6,7,8$; no digit being repeated in any number.
4) Find the number of ways in which letters of the word ARRANGEMENT can be arranged so that the two A's and two R's do not occur together. (HOT)
5) If $C(2 n, 3): C(n, 3):: 11: 1$ find n.
6) If $P(11, r)=P(12, r-1)$ find r.

Note : atleast means \geq

Answers

1) 4989600,120960
2) 282240 Hint (consider the best and the worst paper as one paper)
3) 90
4) 1678320
5) 6
6) 9
7) 120
8) $n=3, r=2$
9) 425
10)

i) 21
ii) 441
iii) 91

