Downloaded from www.studiestoday.com

CHAPTER-7

PERMUTATIONS AND COMBINATIONS

KEY POINTS

- When a job (task) is performed in different ways then each way is called the permutation.
- Fundamental Principle of Counting : If a job can be performed in m different ways and for each such way, second job can be done in n different ways, then the two jobs (in order) can be completed in $\mathrm{m} \times \mathrm{n}$ ways.
- Fundamental Principle of Addition : If there are two events such that they can be performed independently in m and n ways respectively, then either of the two events can be performed in $(m+n)$ ways.
- The number of arrangements (permutations) of n different things taken r at a time is ${ }^{n} P_{r}$ or $P(n, r)$
- The number of selections (Combinations) of n different things taken r at a time is ${ }^{n} C_{r}$.
- ${ }^{n} P_{r}=\frac{n!}{(n-r)!}, \quad{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$
- No. of permutations of n things, taken all at a time, of which p are alike of one kind, q are alike of $2^{\text {nd }}$ kind such that $p+q=n$, is $\frac{n!}{p!q!}$
- $0!=1,{ }^{n} C_{o}={ }^{n} C_{n}=1$
- ${ }^{n} P_{r}=r!{ }^{n} C_{r}$

Downloaded from www.studiestoday.com

- ${ }^{n} C_{r}={ }^{n} C_{n-r}$
- ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
- ${ }^{n} C_{a}={ }^{n} C_{b}$ if $a+b=n$ or $a=b$

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Using the digits $1,2,3,4,5$ how many 3 digit numbers (without repeating the digits) can be made?
2. In how many ways 7 pictures can be hanged on 9 pegs?
3. Ten buses are plying between two places A and B. In how many ways a person can travel from A to B and come back?
4. There are 10 points on a circle. By joining them how many chords can be drawn?
5. There are 10 non collinear points in a plane. By joining them how many triangles can be made?
6. If $\frac{1}{6!}+\frac{1}{8!}=\frac{x}{9!}$ find x
7. If ${ }^{n} P_{4}:{ }^{n} P_{2}=12$, find n.
8. How many different words (with or without meaning) can be made using all the vowels at a time?
9. Using $1,2,3,4,5$ how many numbers greater than 10000 can be made? (Repetition not allowed)
10. If ${ }^{n} C_{12}={ }^{n} C_{13}$ then find the value of ${ }^{25} C_{n}$.
11. In how many ways 4 boys can be choosen from 7 boys to make a committee?
12. How many different words can be formed by using all the letters of word SCHOOL?
13. In how many ways can the letters of the word PENCIL be arranged so

Downloaded from www.studiestoday.com

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

14. In how many ways 12 boys can be seated on 10 chairs in a row so that two particular boys always take seat?
15. In how many ways 7 positive and 5 negative signs can be arranged in a row so that no two negative signs occur together?
16. From a group of 7 boys and 5 girls, a team consisting of 4 boys and 2 girls is to be made. In how many different ways it can be done?
17. In how many ways can one select a cricket team of eleven players from 17 players in which only 6 players can bowl and exactly 5 bowlers are to be included in the team?
18. In how many ways 11 players can be choosen from 16 players so that 2 particular players are always excluded?
19. Using the digits $0,1,2,2,3$ how many numbers greater than 20000 can be made?
20. If the letters of the word 'PRANAV' are arranged as in dictionary in all possible ways, then what will be $182^{\text {nd }}$ word.
21. From a class of 15 students, 10 are to choosen for a picnic. There are two students who decide that either both will join or none of them will join. In how many ways can the picnic be organized?
22. Using the letters of the word, 'ARRANGEMENT' how many different words (using all letters at a time) can be made such that both A, both E, both R and both N occur together.
23. A polygon has 35 diagnals. Find the number of its sides.
[Hint : Number of diagnals of n sided polygon is given by ${ }^{n} C_{2}-n$]
24. How many different products can be obtained by multiplying two or more of the numbers $2,3,6,7,9$?
25. Determine the number of 5 cards combinations out of a pack of 52 cards if atleast 3 out of 5 cards are ace cards?
26. How many words can be formed from the letters of the word 'ORDINATE' so that vowels occupy odd places?

Downloaded from www.studiestoday.com

LONG ANSWER TYPE QUESTIONS (6 MARKS)

27. Using the digits $0,1,2,3,4,5,6$ how many 4 digit even numbers can be made, no digit being repeated?
28. There are 15 points in a plane out of which only 6 are in a straight line, then
(a) How many different straight lines can be made?
(b) How many triangles can be made?
29. If there are 7 boys and 5 girls in a class, then in how many ways they can be seated in a row such that
(i) No two girls sit together?
(ii) All the girls never sit together?
30. Using the letters of the word 'EDUCATION' how many words using 6 letters can be made so that every word contains atleast 4 vowels?
31. What is the number of ways of choosing 4 cards from a deck of 52 cards? In how many of these,
(a) 3 are red and 1 is black.
(b) All 4 cards are from different suits.
(c) Atleast 3 are face cards.
(d) All 4 cards are of the same colour.
32. How many 3 letter words can be formed using the letters of the word INEFFECTIVE?
33. How many 5 letter words containing 3 vowels and 2 consonants can be formed using the letters of the word EQUATION so that 3 vowels always occur together?

ANSWERS

1. 60 2. $\frac{9!}{2!}$

Downloaded from www.studiestoday.com

5. 120 6. 5137. $\mathrm{n}=6$8. 120
6. 120
7. 35
8. 360
9. 120
10. $90 \times{ }^{10} \mathrm{P}_{8}$
11. 56
12. 2772
13. 36
14. ${ }^{13} \mathrm{C}_{10}+{ }^{13} \mathrm{C}_{8}$
15. 10
16. 4560
17. 420
18.

(a) 91
(b) 435
29.
(i) $7!\times{ }^{8} P_{5}$
(ii) $12!-8!\times 5$!
16. 350
18. 364
20. PAANVR
22. 5040
24. 26
26. 576
30. 24480
31. ${ }^{52} \mathrm{C}_{4}$
(a) ${ }^{26} \mathrm{C}_{1} \times{ }^{26} \mathrm{C}_{3}$
(b) $(13)^{4}$
(c) 9295 (Hint : Face cards : 4J + 4K + 4Q)
(d) $2 \times{ }^{26} \mathrm{C}_{4}$
32. 265 (Hint : make 3 cases i.e.
(i) All 3 letters are different (ii) 2 are identical 1 different
(iii) All are identical, then form the words.)

Do ${ }^{33 n}$ nl83aded from www.studiestoday.com

