Q.11)	How many numbers greater than 1000 but not greater than 4000 can be formed with the digits 1000 < no.s ≤ 4000 $0,1,2,3,4 \text { if }$ (i) Repeated of digits allowed (ii) Repeated of digits not allowed	
Sol.11)	$1000<\text { no.s } \leq 4000$ \therefore it is 4 digits number Digits available $=0,1,2,3,4$ 1. When repeated of digits allowed (i) The first place (thousand's) can be filled in 3 ways (ii) The second place (hundred) can be filled in 5 ways (iii) The third place (ten's) can be filled in 5 ways (iv) The fourth place (unit's) can be filled in 5 ways \therefore the numbers formed $=3 \times 5 \times 5 \times 5=375$ But there 375 numbers contains a number 1000 but does not contain 4000 (v) The required 4 digit numbers are $=375-1(\text { for } 1000)+1(\text { for } 4000)$ $\text { = } 375 \text { ans. }$ 2. Repeated digits not allowed Required no.s are $=3 \times 4 \times 3 \times 2=72$ ans.	
Q.12)	How many natural numbers less than 1000 can be formed from the digits $0,1,2,3,4,5$ when a digit may be repeated any no. of times?	
Sol.12)	digits available 0,1,2,3,4,5 Repeated of digit allowed Required 1 digit, 2 digits and 3 digits no.s (i) Number less than 1000 can be 1 digit, 2 digit and 3 digit (i) Total (one) digit numbers $5=5$ (ii) 2 digit numbers $\begin{array}{\|l\|l\|} \hline 5 & 6 \\ \hline \end{array}$ (iv) 3 digit numbers $\begin{array}{\|l\|l\|l\|} \hline 5 & 6 & 6 \\ \hline \end{array}$ \therefore the required number which are less than 1000 $=5+30+180=215 \text { ans. }$	
Q.13)	How many numbers divisible by 5 and lying between 4000 and 5000 can be formed from the digits 4,5,6,7 and 8?	
Sol.13)		25
Q.14)	How many numbers are there lying between 3000 to 5000 Which are divisible by 2 (i) when number of digits is repeated (ii) when repeated of digits allowed	
Sol.14)	(i) 576 (ii) 999 HINT: Two cases (i) (ii)	

	(4)			
	188	7	4	
Q.15)	Find the number of numbers greater than a (1000000) million, that can be formed with the digits 0 to 9 .			
Sol.15)				
Q.16)	How many 4 digits even numbers can be formed using digits 0 to 9 when repeated of digits allowed and when not allowed?			
Sol.16)	(i) $2296=(9 \times 8 \times 7 \times 1)+(8 \times 8 \times 7 \times 4)$ (ii) 4500			
Q.17)	How many numbers between 400 and 1000 can be formed with the digits $0,2,3,4,5,6$ if no digit is repeated?			
Q.18)	Given 4 flags of different colours, how many different signals can be generated using at least 2 flags?			
Sol.18)	Given: 4 flags Required at least 2 flags i.e. 2,3 or 4 flag (i) Signals using 2 flags $\begin{array}{\|l\|l\|} \hline 4 & 3 \\ \hline \end{array}$ (ii) No. of signals using 3 flags $\begin{array}{\|l\|l\|l\|} \hline 4 & 3 & 2 \\ \hline \end{array}$ (iii) No. of signals using 4 flags $\begin{array}{\|l\|l\|l\|l\|} \hline 4 & 3 & 2 & 1 \\ \hline \end{array}$ \therefore total no of signals using at least 3 flags are $=12+24+24=60$ ans.			
Q.19)	In how many ways can 3 prizes be distributed among y boys when (i) No boy gets more than one prize (ii) A boy may get any number of prizes (iii) No boy gets all the prizes			
Sol.19)	1. 4 3 2 (i) The first prize can be given away in 4 ways (ii) The second prize can be given in 3 ways (iii) The third prize can be given in 2 ways \therefore no of ways in which 3 prizes can be 91 cm such that no boy gets more than 1 prize are $=4 \times 3 \times 2=24 \text { ans. }$ 2. (i) The first prize can be given in 4 ways (ii) The second prize can be given in 4 ways (iii) The third prize can be given in 4 ways \therefore required no. of ways $=4 \times 4 \times 4=64$ 3. (i) Total no of ways of distributing 3 prizes among 4 boys $=4 \times 4 \times 4=64$ (ii) No of ways in which a boy get all the 3 prizes is 4 (iii) \therefore required no of ways in which no boy get all the prizes $=64-4=60$ ans.			
Q.20)				

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

StudiesToday

	Consonants $=$ R,D,N,T $=4$	
Sol.20)	1. Total no. of words using all letters $=8 \mathrm{p}_{8}=8$! ans.	
	2. No. of words using 5 letters:- $8 p_{8}=\frac{8!}{3!}=\frac{40320}{6}=6720$ ans.	
	3. The words start by with R and end with T : (i) Fix the letter ' R ' in first position and ' T ' in the last position (ii) The remaining 6 letters can be arranged in 6! Ways (iii) \therefore required no of words $=1 \times 6!\times 1=72 c$ ans.	
	4. Using 5 letters, the words start by with D and end with E (i) Fix the position of letter ' D ' in first position and ' E ' in the last position (ii) The remaining 3 letters can be arranged in $6 p 3=\frac{6!}{3!}$ ways (iii) \therefore required no of words $=1 \times \frac{6!}{3!} \times 1=120$ ans.	
	5. The words starting and ending with vowel (i) There are 4 vowels available (ii) The first position /place can be filled in 4 ways (iii) The last place can be filled in 3 ways (iv) The remaining 6 letters can be arranged in 6 ways (v) \therefore the required no of words $=4 \times 6!=3$ $\begin{aligned} & =4 \times 720 \times 3 \\ & =8640 \text { ans. } \end{aligned}$	
	6. Words in which letter ' D ' is not included in any word: (i) Then 7 letters are remaining (ii) These 7 letters can be arranged in 7! Ways (iii) \therefore required no of words $7!=5040$ ans.	
	7. Words in which all vowels are together: (i) Consider all faces vowels as 1 letter $\mathrm{I}, \mathrm{O}, \mathrm{A}, \mathrm{E}=1$ (ii) Now we have to arrange $(4+1)=5$ letters (iii) There 5 letters can be arranged in 5! Ways (iv) Now four vowels can mutually arrange in 4! Ways (v) \therefore no of words in which all vowels occur together are $=5$! $\times 4$! $=120 \times 24=2880$ ans.	
	8. Words in which all vowels never together: Required no of words $=$ (total no. of words) - (no of words in which all vowels together) $\begin{aligned} & =8!-5!\times 4! \\ & =40320-2880=37440 \text { ans. } \end{aligned}$	
	9. Words in which all vowels together and all consonants together: (i) Consider 4 vowels as 1 letter $\mathrm{I}, \mathrm{O}, \mathrm{E}, \mathrm{A}=1$ (ii) 4 consonants as another letter $\mathrm{R}, \mathrm{D}, \mathrm{N}, \mathrm{T}=1$ (iii) Now we have to arrange $(1+1)=2$ letters (iv) These 2 letters can be arranged in 2 ! Ways (v) 4 vowels can mutually arrange in 4! Ways (vi) 4 consonants can mutually arrange in 4 ! Ways (vii) The required no of words $=2!\times 4!\times 4$! $\begin{aligned} & =2 \times 24 \times 24 \\ & =1172 \text { ans. } \end{aligned}$	
	10. Words in which no two vowels are together: $\ldots c_{1} \ldots c_{2 \ldots} c_{3} \ldots c_{4}$ (i) Fix the position of 4 consonants alternatively (ii) Now there are 5 places available for 4 vowels	

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

StudiesToday

	(iii) Which they can arrange in ${ }^{5} \mathrm{p}_{4}$ ways (iv) Now, 4 consonants can mutually arrange in 4! Ways (v) \therefore required no of words in which no two vowels are together $={ }^{5} p_{4} \times 4$! $\begin{aligned} & =120 \times 24 \\ & =2880 \text { ans. } \end{aligned}$								
	11. Words such that the letter ' R ' is always next to ' A ': (i) Consider AR as 1 letter (they can't mutually interchange) (ii) Now, we have to arrange $(6+1)=7$ letters (iii) These 7 letters can be arranged in 7! Ways (iv) AR can arrange only in 1 way $\therefore \quad$ required no. of words $=1 \times 7!=5040$ ans.								
	12. Words in which consonants occupy odd places: $\frac{c_{1}}{1} \frac{v_{1}}{2} \frac{c_{2}}{3} \frac{v_{2}}{4} \frac{c_{3}}{5} \frac{v_{3}}{6} \frac{c_{4}}{7} \frac{v_{4}}{8}$ (i) Let the 4 consonants are at odd places $(1,3,5,7)$ (ii) $\therefore 4$ vowels must be at even places $(2,4,6,8)$ (iii) 4 consonants can mutually arrange in 4 ! Ways (iv) 4 vowels can mutually interchange in 4! Ways (v) \therefore required no. of words $=4$! $X 4$! $\begin{aligned} & =24 \times 24 \\ & =576 \text { ans. } \end{aligned}$								
	13. Words such that vowels and consonants are alternating: There are two cases; 1. vcvcvcvc (i) let the word start by with a vowel (ii) 4 vowels can mutually arrange in 4! Ways (iii) 4 consonants can mutually arrange in 4 ! ways (iv) No. of words $=4$! $\times 4$! $\begin{aligned} & =24 \times 24 \\ & =576 \text { ans. } \end{aligned}$ 2. cvcvcvcv (i) let the word start by with a consonant (ii) 4 consonants can mutually arrange in 4! Ways (iii) 4 vowels can mutually arrange in 4 ! ways (v) No. of words $=4!\times 4$! $\begin{aligned} & =24 \times 24 \\ & =576 \text { ans. } \end{aligned}$ \therefore the required no. of words in which vowels and consonants are alternating $=576+$ $576=1152$ ans.								
	14. Words such that the letters A and R are not together:- (i) Consider A and R as 1 letter (ii) Now, we have to arrange $(6+1)=7$ letters (iii) Then 7 letters can be arranged in 7 ! Ways (iv) Now, A and R can mutually arrange in 2 ! Ways (v) No. of words in which A and R are together $=7!\times 2!=5040 \times 2=$ 10080 No. of vowels in which A and R are not together $=$ (total no. of words) - (no of words in which A and R are together) $=8!-10080=40320-10080=30240$ ans.								
	15. Words such that there are always 2 letters between A and R								

 StudiesToday om| | (i) Let A in the first place and R in the fourth place
 (ii) The remaining 6 letters can be arranged in 6! Ways
 (iii) Now, there are 5 such cases in which there are 2 letters between A and R
 (iv) No. of words $=6!+6!+6!+6!+6!=(720) \times 5=3600$
 (v) Similarly, same no. of words can be formed in which R comes first and A later
 (vi) \therefore required no. of words $=3600+3600=7200$ ans. |
| :---: | :---: |
| | 16. How many 5 letters words consisting of 3 vowels and 2 consonants :
 (i) First we have to select 3 vowels out of 4 vowels and 2 consonants out of 4 consonants
 (ii) These letters can be selected in $=4 c_{3} \times 4 c_{2}$ ways
 (iii) Now these selected 5 letters can be mutually arranged in 5 ! ways A and R
 (iv) \therefore the required no. of words $=4 c_{3} \times 4 c_{2} \times 5!=4 \times 6 \times 120=2880$ ans. |
| | 17. Find the RANK of the word INVOLUTE E, I, L, N, O, T, U, V
 No. of words starting with $\mathrm{E}=7!=5040$ |

