StudiesToday

	COMBINATION
Q.36)	4 cards out of 52 cards are chosen. Find no. of ways in which :
Sol.36)	1. 4 cards are chosen:- (i) 4 cards out of 52 cards can be chosen in $={ }^{52} C_{4}$ ways $=\frac{52!}{4!48!}=270725$ ans. 2. 4 cards out of same suit: (i) There are 4 suits Diamond Club Heart Spade (13) (13) (13) (13) (ii) No. of ways of selecting, 4 diamonds out of 13 diamond cards $={ }^{13} \mathrm{C}_{4}$ (iii) Similarly, ${ }^{13} C_{4}$ ways for selecting 4 spade, 4 clubs $\& 4$ heart (iv) \therefore required no. of ways of selection $={ }^{13} \mathrm{C}_{4}+{ }^{13} \mathrm{C}_{4}+{ }^{13} \mathrm{C}_{4}+{ }^{13} \mathrm{C}_{4}=4 \times{ }^{13} \mathrm{C}_{4}=2860$ ans. 3. 4 cards belong to 4 different suits (i) We have to select 1 card from each suit (ii) 1 diamond out of 13 diamonds can be selected in $={ }^{13} \mathrm{C}_{1}$ ways (iii) Similarly, ${ }^{13} \mathrm{C}_{1}$ is the no. of ways of selecting 1 club, 1 heart \& 1 spade (iv) \therefore required no. of selection $=13 C 1 \times 13 C 1 \times 13 C 1 \times 13 C 1=13 \times 13 \times 13 \times 13=$ $(13)^{4}=28561$ ans. 4. All are face cards (i) There are 12 face cards ($4 \mathrm{~J}, 4 \mathrm{Q}, 4 \mathrm{~K}) \backslash 4$ face cards out of 12 face cards can be selected in ${ }^{12} \mathrm{C}_{4}$ ways $=\frac{12!}{4!8!}=495$ ans. 5. Two are red \& two are black: (i) Red cards $=26$, black cards $=26$ (ii) 2 red cards out of 26 red cards can be selected in $={ }^{26} \mathrm{C}_{2}$ ways (iii) 2 black cards out of 26 can be selected in $={ }^{26} \mathrm{C}_{2}$ ways (iv) Required no. of selections $={ }^{26} C_{2} \times{ }^{26} C_{2}=\frac{26!}{2!24!} \times \frac{26!}{2!24!}=325 \times 325=105625$ ans. 6. 4 cards are of same colour:- (i) 2 cases: either they all are red \& all are black (ii) 4 red cards out of 26 red cards can be selected in $={ }^{26} \mathrm{C}_{4}$ ways (iii) 4 black cards out of 26 black cards can be selected in ${ }^{26} \mathrm{C}_{4}$ ways (iv) \therefore required no. of ways of selection $={ }^{26} \mathrm{C}_{4}+{ }^{26} \mathrm{C}_{4}=\frac{26!}{4!22!}+\frac{26!}{4!22!}=14950+14950$ $=29900$ ans.
Q.37)	A group consisting of 4 girls $\& 7$ boys. In how many way 5 members are selected such that the team consists:
Sol.37)	1. No girls (i) Since no girl are to be selected, the remaining 5 are to selected from 7 boys (ii) Which can be selected in $={ }^{7} C_{5}$ ways $={ }^{7} C_{5}={ }^{7} C_{2}=\frac{7 \times 6}{2}=21$ ans. 2. At least 3 boys Three cases: Case: 1) selecting 3 boys $\& 2$ girls which can be selected in $=7 c_{3} \times 4 c_{2}$ ways $=35 \times 6=$ 210 Case: 2) selecting 4 boys \& 1 girl which can be selected in $7 c_{3} \times 4 c_{2}$ ways $=35 \times 4=180$ Case: 3) selecting 5 boys \& no girl which can selected in $=7 c_{5} \times 4 c_{0}$ ways $=21 \times 1=21$ \therefore required no. of ways of selection $=210+180+21=411$ ans.

StudiesToday

	3. At most 2 boys: Case:1) selecting 2 boys $\& 3$ girls which can be selected in $=7 c_{2} \times 4 c_{3}$ ways $=21 \times 4=$ 84 Case: 4) selecting 1 boy 4 girls which can be selected in $7 c_{1} \times 4 c_{4}$ ways $=7 \times 1=7$ \therefore required no. of ways of selection $=84+7=91$ ans. 4. At least 1 boy \& 1 girl Case:1) selecting 1 boy 4 girls which can be selected in $=7 c_{1} \times 4 c_{4}$ ways $=7 \times 1=$ 7 Case:2) selecting 2 boys 3 girls which can be selected in $=7 c_{2} \times 4 c_{3}$ ways $=21 \times 4$ $=84$ Case:3) selecting 3 boys \& 2 girls which can be selected in $=7 c_{3} \mathrm{x} 4 c_{2}$ ways $=35 \mathrm{x}$ $6=210$ Case: 4) selecting 4 boys $\& 1$ girl which can be selected in $7 c_{4} \times 4 c_{1}$ ways $=35 \times 4=$ 180 \therefore required no. of ways of selection $=$ case $: 1+$ case $: 2+$ case $: 3+$ case $: 4$ $=7+84+210=180=481$ ans. 5. At most 1 girl is chosen (7) (4) Case:1) selecting 4 boys \& 1 girl which can be selected in $=4 c_{1} \times 7 c_{4}$ ways $=4 \mathrm{x}$ $35=180$ Case:2) selecting NO girl \& 5 boys which can be selected in $=4 c_{6} \times 7 c_{5}$ ways $=1 \mathrm{x}$ $21=21$ \therefore required no. of ways of selections $=180+21=201$ 6. A particular boy \& a particular girl is always chosen:- (i) Let the particular boy is A girl is B (ii) They are selected only in 1 way (as they are always selected) (iii) Now we have to select 3 persons from the remaining 11 persons (iv) Which can be selected in $=11 C_{3}$ ways $=165$ ans.
Q.38)	A polygon has n sides. Find the number of diagonals?
Sol.38)	(i) A polygon having n sides has n vertices (ii) Total number of lines that can be drawn using n vertices (points) $={ }^{n} C_{2}$ (iii) Then ${ }^{\mathrm{n}} \mathrm{C}_{2}$ lines also contain n -sides (iv) \therefore the number of diagonals ${ }^{\mathrm{n}} \mathrm{C}_{2}-\mathrm{n}=\frac{n(n-1)}{2}-n=\frac{n^{2}-n-2 n}{2}=\frac{n^{2}-3 n}{2}$ ans.
Q.39)	A polygon has 44 diagonals. Find the number of sides?
Sol.39)	(i) We know that the total no. of diagonals having n -sides $=\frac{n^{2}-3 n}{2}$ (from q.38) (ii) Given: no. of diagonals 44 $\therefore \frac{n^{2}-3 n}{2}=44$

StudiesToday

	$\begin{aligned} & \Rightarrow n^{2}-3 n-88=0 \\ & \Rightarrow(n-11)(n+8)=0 \\ & \Rightarrow n=11 \\ & \Rightarrow n=-8 \text { (no. of sides can never be }-n) \end{aligned}$ \therefore there are 11 sides in the polygon	
Q.40)	There are 10 points in a plane, out of which 4 points are collinear. Find no. of straight lines \& no. of triangles?	
Sol.40)	1. Total no. of straight lines using 10 points $=10 c_{2}$ (i) No. of straight line using 4 points $=4 c_{2}$ (ii) But 4 collinear points, when join pair wise gives only 1 straight line (iii) \therefore required no. of straight lines $=10 c_{2}-4 c_{2}+1=45-6+1=40$ ans. 2. Total no. of triangles using 10 points $=10 c_{3}$ (i) No. of triangles using 4 points $=4 c_{3}$ (ii) But 4 collinear points cannot form a triangle (iii) \therefore required no. of triangles $=10_{3}-4 c_{3}=120-4=116$ ans.	
Q.41)	There are ' m ' no. of horizontal parallel lines \& ' n ' no. of vertical parallel lines. How many no. of parallelogram can be formed?	
Sol.41)	(i) To form a parallelogram, we require two horizontal lines \& two vertical lines (ii) Now two horizontal lines out of 'm horizontal' lines can be selected in = $m c_{2}$ ways (iii) Two vertical lines out of ' n vertical' lines can be selected $\mathrm{in}=n c_{2}$ ways (iv) \therefore the required no. of triangles $=m c_{2} \times n c_{2}$	
Q.42)	From a class of 25 students, 10 are to be chosen for a party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can they be chosen?	
Sol.42)	There are two cases Case:1) three particular students join the party:- (i) Now we have to select 7 student from the remaining 22 students (ii) Which can be selected in ${ }^{22} \mathrm{C}_{7}$ ways Case:2) three particular students do not join the party:- (i) Now we have to choose 10 students from the remaining 22 students (ii) Which can be selected in $={ }^{22} \mathrm{C}_{10}$ ways \therefore required no. of ways of selection $=$ case: $1+$ case: $2={ }^{22} \mathrm{C}_{7}+{ }^{22} \mathrm{C}_{10}$ $=\frac{22!}{7!15!}+\frac{22!}{10!12!}=817190 \mathrm{ans}$	
Q.43)	A boy has 3 library tickets and 8 books of his interest in the library of these 8 books; he does not want to borrow chemistry part 2 , unless chemistry part 1 is also borrowed. In how many ways can he choose the three books?	
Sol.43)	There are 2 cases:- Case:1) when chemistry part 1 is borrowed :- (i) Now, he has to select 2 books out of the remaining 7 books (ii) Which can be selected in $=7 c_{2}$ ways Case:2) when chemistry part 1 is not borrowed:- (i) Then, he does not want to borrow chemistry part 2 (ii) Now, he has to select 3 books out of the remaining 6 books (iii) Which can be selected in $6 c_{3}$ ways \therefore required no. of ways of selection $=$ case: $1+$ case: 2 $=7 c_{2}+6 c_{3}=21+20=41$ ans.	
Q.44)	A box contains 5 red balls \& 5 black balls. In how many ways 6 balls be selected such that:	
Sol.44)	1. There are exactly 2 red balls 2. At least 3 red balls	

	3. At least 2 red balls 4. At least 2 balls from each colour 5. No. of black balls \& no. of white balls are equal 6. Red balls are in majority	
Q.45)	If $2 n_{C_{3}}: n_{C_{3}}=11: 1$, find n ?	
Sol.45)	We have, $\frac{2 n_{C_{3}}}{n_{C_{3}}}=\frac{11}{1}$ $\begin{aligned} & \Rightarrow \frac{\frac{(2 n)!}{3!(2 n-3)!}}{\frac{n!}{3!(n-2)!}}=\frac{11}{1} \ldots \ldots .\left\{n_{C_{3}}=\frac{n!}{\mathrm{r}!(\mathrm{n}-\mathrm{r})!}\right\} \\ & \Rightarrow \frac{(2 \mathrm{n})!(\mathrm{n}-3)!}{(2 \mathrm{n}-3)!\mathrm{n}!}=11 \\ & \Rightarrow \frac{(2 \mathrm{n})(2 \mathrm{n}-1)(2 \mathrm{n}-2)(2 \mathrm{n}-3)!(\mathrm{n}-3)!}{(2 \mathrm{n}-3)!\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)!}=11 \\ & \Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=11 \\ & \Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=11 \\ & \Rightarrow 8 \mathrm{n}-4=11 \mathrm{n}-22 \\ & \Rightarrow 3 \mathrm{x}=18 \\ & \Rightarrow \mathrm{n}=6 \text { ans. } \end{aligned}$	
Q.46)	If $2 n_{C_{3}}: n_{C_{2}}=44: 3$, find n ?	
Sol.46)		n $=$ 6

