Downloaded Irol
Studies Today.com

Q.47)	If $n_{p_r} = n_{p_{r+1}}$ and $n_{C_r} = n_{C_{r+1}}$, find the value of n & r ?	
Sol.47)		
301.47)	We have, $n_{p_r} = n_{p_{r+1}}$	
	$\Rightarrow \frac{n!}{(n-r)!} = \frac{n!}{(n-r)!}$ $\Rightarrow \frac{1}{(n-r)(n-r-1)!} = \frac{1}{(n-r-1)!}$	
	$\Rightarrow \frac{1}{(1-x)^2} = \frac{1}{(1-x)^2}$	
	$ (n-r)(n-r-1)! (n-r-1)! $ $ \Rightarrow n-r=1(1) $	
	· ·	
	n! $n!$ $n!$	
	We have, $n_{C_r} = n_{C_{r-1}}$ $\Rightarrow \frac{n!}{r!(n-r)!} = \frac{n!}{(r+1)!(n-r-1)!}$ $\Rightarrow \frac{1}{r!(n-r)(n-r-1)!} = \frac{1}{(r+1)r!(n-r-1)!}$	
	$\Rightarrow \frac{1}{r!(r-r)(r-r-d)!} = \frac{1}{(r+d)r!(r-r-d)!}$	
	r!(n-r)(n-r-1)! (r+1)r!(n-r-1)!	
	$\Rightarrow \frac{1}{n-r} = \frac{1}{r+1}$ $\Rightarrow n-r = r+1 \dots (2)$	
	from (1) & (2),	
	r+1 = 1	
0.40\	\Rightarrow r = 0 & n = 1 ans.	
Q.48)	In an examination, a question paper consists of 12 qns. Divided in to 2 parts,	
	part 1 & part 2 containing 5 & 7 questions respectively. A student is required	
	to attempt 8 questions in all selecting at least 3 questions from each part. In how many ways can be a student select questions?	
Sol.48)	now many ways can be a student select questions:	420
Q.49)	Determine the number of 5 card combination out of a dick of 52 cards. If	420
(4.43)	there is exactly one all in each combination?	
Sol.49)	there is exactly one all in each combination.	4c ₁ x 48c ₄
Q.50)	How many different words can be formed with the letters of word	1012 1004
α.50)	MISSISSPPI? In how many of these words in which 4 I's do not came together?	
Sol.50)	HINT: 4 I's not together = total words – 4 I's together words	
,	$=\frac{11!}{4!4!2!}-\frac{8!}{4!2!}=33810$ ans.	
O E1)	4 4 2 4 2 55510 dills.	
Q.51)	If $n_{C_8} = n_{C_6}$, find n_{C_2} ?	
Sol.51)	We have, $n_{C_8} = n_{C_6}$	
	$\Rightarrow n = 8+6 \dots \left\{ prop. if \ n_{C_x} = n_{C_y} \text{ then } x + y = n \right\}$	
	⇒ n = 14	
	now, $n_{C_2} = 14_{C_2} = \frac{14 \times 13}{2} = 91 \ ans.$	
Q.52)	We wish to select 6 persons from 8, but if the person A is chosen, then B must	
	be chosen. In how many ways can the selection be made?	
Sol.52)	HINT: two cases :	22
,	Case 1): 6_{C_4} & Case 2): 7_{C_6}	
Q.53)	How many words can be formed by taking 4 letters at a time from the letter	
1 '	of the word MURADABAD?	
]	of the word work by by b.	
Sol.53)	of the word Wich Abrah.	Same as
Sol.53)	of the word Work BAB.	Same as Q.19
Sol.53)	of the word Work Abras.	
Sol.53) Q.54)	There are 13 players out of which 4 are bowlers, in how many ways a team of	Q.19
		Q.19
	There are 13 players out of which 4 are bowlers, in how many ways a team of	Q.19

Downloaded from www.studiestoday.com

-	Downloaded not
	Studies Today.com

	3. 1 particular player always be chosen	
	4. Must include at least 3 bowlers	
Sol.54)	(1) $13_{C_{11}}$, (2) $12_{C_{11}}$, (3) $12_{C_{10}}$, (4) $9_{C_8} \times 4_{C_3} + 9_{C_7} \times 4_{C_4}$	
Q.55)	A committee of 7 has to be formed from 9 boys & 4 girls. In how many ways	
	can this be done, when committee consists of:	
	1. Exactly 3 girls	
	2. At least 3 girls	
	3. At most 3 girls	
	4. None of them is a girl	
	5. Boys are in majority	
	6. At least 3 from each gender	
	7. 1 particular boy and 1 particular girl never chosen	
Sol.55)	1. $9_{C_4} \times 4_{C_3}$	
	2. $9_{C_4} \times 4_{C_3} + 9_{C_3} \times 4_{C_4}$	
	3. $(9_{C_4} \times 4_{C_3}) + (9_{C_5} \times 4_{C_2}) + (9_{C_6} \times 4_{C_1}) + (9_{C_7} \times 4_{C_0})$	
	. 0	
	4. 9_{C_7} 5. $(9_{C_4} \times 4_{C_3}) + (9_{C_5} \times 4_{C_2}) + (9_{C_6} \times 4_{C_1}) + (9_{C_7} \times 4_{C_0})$	
	6. $(9_{C_4} \times 4_{C_3}) + (9_{C_3} \times 4_{C_4})$	
	7. 11_{C_7}	
0.56)	Find the no. of ways in which 5 boys and 5 girls be seated in a row so that:	
Q.56)	No 2 girls may sit together	
Sol.56)	2. All the girls never together (1) Fixel (2) 101 Fixel and	
	(1) 5!x6!, (2) 10! – 5! X 6! ans.	
Q.57)	A code word is to consist of 2 distinct English alphabets followed by 2 distinct	
	numbers from 1 to 9. For example, (A23 is a code word. (i) how many such	
Sol.57)	code words are there and (ii) how many of them & with an even integer?	
301.377	(i) $26_{p_2} \times 9_{p_2} = 46800$ ans.	
0.50)	(ii) $9_{C_8} \times 8 \times 4 = 20800$ ans.	
Q.58)	A box contains 2 white balls, 3 black balls & 4 red balls. The number of ways	
	of drawing 3 balls from the box if at least 1 black ball is to be included in the	
Cal EQ)	draw?	
Sol.58)	64	
	(3) (6) Black Non- black	
	Black Non- black 1 2	
	$\begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix}$	
0.507		
Q.59)	A committee of 6 is to be chosen from 10 men & 7 women so as to contain at	
	least 3 men & at least 2 women. In how many different ways can this be done	
Sol.59)	if two particular women refuse to serve on the same committee? Men = 10 , women = 7	
301.39)	Required = 6	
	(i) Total no. of committees containing at least 3 women & 2 men are	
	given by	
	$= (10c_3 \times 7c_3) + (10c_4 \times 7c_2)$	
	$= (10c_3x / c_3) + (10c_4x / c_2)$ $= 4200 + 4410 = 8610$	
	(ii) No. of committees in which 2 particular women sure on the same	
	committee	
	$= (10c_4 \times 2c_2) + (10c_3 \times 2c_2 \times 5c_1)$	
	$= (10c_4 \times 2c_2) + (10c_3 \times 2c_2 \times 3c_1)$ $= 210+600 = 810$	
	- 210:000 - 010	

(iii) Required no. of committees in which 2 particular women d not came		
together		
T . I		

= Total - together = 8610 - 810

= 7800 ans.

MMM studiestoday.com