Downloadeded from from wWw.studiestodivecoitoday.com StudiesToday on

Q.47)	If $n_{p_{r}}=n_{p_{r+1}}$ and $n_{C_{r}}=n_{C_{r+1}}$, find the value of $\mathrm{n} \& \mathrm{r}$?	
Sol.47)	We have, $n_{p_{r}}=n_{p_{r+1}}$ $\begin{align*} & \Rightarrow \frac{n!}{(n-r)!}=\frac{p_{r}+p_{r}}{(n-r)!} \\ & \Rightarrow \frac{1}{(n-r)(n-r-1)!}=\frac{1}{(n-r-1)!} \\ & \Rightarrow n-r=1 \ldots \ldots \ldots(1) \tag{1} \end{align*}$ We have, $n_{C_{r}}=n_{C_{r-1}}$ $\begin{align*} & \Rightarrow \frac{n!}{r!(n-r)!}=\frac{n!}{(r+1)!(n-r-1)!} \\ & \Rightarrow \frac{1}{r!(n-r)(n-r-1)!}=\frac{1}{(r+1) r!(n-r-1)!} \\ & \Rightarrow \frac{1}{n-r}=\frac{1}{r+1} \\ & \Rightarrow n-r=r+1 \tag{2} \end{align*}$ from (1) \& (2), $r+1=1$ $\Rightarrow r=0 \& n=1 \text { ans. }$	
Q.48)	In an examination, a question paper consists of 12 qns. Divided in to 2 parts, part $1 \&$ part 2 containing $5 \& 7$ questions respectively. A student is required to attempt 8 questions in all selecting at least 3 questions from each part. In how many ways can be a student select questions?	
Sol.48)		420
Q.49)	Determine the number of 5 card combination out of a dick of 52 cards. If there is exactly one all in each combination?	
Sol.49)	+	$4 c_{1} \times 48 c_{4}$
Q.50)	How many different words can be formed with the letters of word MISSISSPPI? In how many of these words in which 4 I's do not came together?	
Sol.50)	HINT : 4 I's not together = total words - 4 l's together words $=\frac{11!}{4!4!2!}-\frac{8!}{4!2!}=33810$ ans.	
Q.51)	If $n_{C_{8}}=n_{C_{6}}$, find $n_{C_{2}}$?	
Sol.51)	$\begin{aligned} & \text { We have, } n_{C_{8}}=n_{C_{6}} \\ & \quad \Rightarrow \mathrm{n}=8+6 \ldots \ldots \ldots . . .\left\{\text { prop. if } n_{C_{x}}=n_{C_{y}} \text { then } \mathrm{x}+\mathrm{y}=\mathrm{n}\right\} \\ & \quad \Rightarrow \mathrm{n}=14 \end{aligned}$	
Q.52)	We wish to select 6 persons from 8 , but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?	
Sol.52)	HINT: two cases : Case 1): $6_{C_{4}}$ \& Case 2): $7_{C_{6}}$	22
Q.53)	How many words can be formed by taking 4 letters at a time from the letter of the word MURADABAD?	
Sol.53)		Same as Q.19.. 626
Q.54)	There are13 players out of which 4 are bowlers, in how many ways a team of 11 be selected such that 1. there is no restriction on selectors 2. 1 particular player never chosen	

StudiesToday om

	3. 1 particular player always be chosen 4. Must include at least 3 bowlers	
Sol.54)	(1) $13_{C_{11}}$, (2) $12_{C_{11}}$, (3) $12_{C_{10}}$, (4) $9_{C_{8}} \mathrm{x} 4_{C_{3}}+9_{C_{7}} \mathrm{x} 4_{C_{4}}$	
Q.55)	A committee of 7 has to be formed from 9 boys $\& 4$ girls. In how many ways can this be done, when committee consists of: 1. Exactly 3 girls 2. At least 3 girls 3. At most 3 girls 4. None of them is a girl 5. Boys are in majority 6. At least 3 from each gender 7. 1 particular boy and 1 particular girl never chosen	
Sol.55)	1. $9_{C_{4}} \times 4 C_{C_{3}}$ 2. $9_{C_{4}} \times 4_{C_{3}}+9_{C_{3}} \times 4_{C_{4}}$ 3. $\left(9_{C_{4}} \times 4_{C_{3}}\right)+\left(9_{C_{5}} \times 4_{C_{2}}\right)+\left({ }_{C_{6}} \times 4_{C_{1}}\right)+\left(9_{C_{7}} \times 4_{C_{0}}\right)$ 4. $9_{C_{7}}$ 5. $\left(9_{C_{4}} \times 4_{C_{3}}\right)+\left(9_{C_{5}} \times 4_{C_{2}}\right)+\left(9_{C_{6}} \times 4_{C_{1}}\right)+\left(9_{C_{7}} \times 4_{C_{0}}\right)$ 6. $\left(9_{C_{4}} \times 4_{C_{3}}\right)+\left(9_{C_{3}} \times 4_{C_{4}}\right)$ 7. $11_{C_{7}}$	
Q.56)	Find the no. of ways in which 5 boys and 5 girls be seated in a row so that: 1. No 2 girls may sit together 2. All the girls never together	
Sol.56)	(1) 5 ! $\times 6$!, (2) 10 ! -5 ! $\times 6$! ans.	
Q.57)	A code word is to consist of 2 distinct English alphabets followed by 2 distinct numbers from 1 to 9 . For example, (A23 is a code word. (i) how many such code words are there and (ii) how many of them \& with an even integer?	
Sol.57)	(i) $26_{p_{2}} \times 9_{p_{2}}=46800$ ans. (ii) $9_{C_{8}} \times 8 \times 4=20800$ ans.	
Q.58)	A box contains 2 white balls, 3 black balls \& 4 red balls. The number of ways of drawing 3 balls from the box if at least 1 black ball is to be included in the draw?	
Sol.58)	64 (3) (6)	
Q.59)	A committee of 6 is to be chosen from 10 men \& 7 women so as to contain at least 3 men \& at least 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee?	
Sol.59)	Men = 10, women = 7 Required $=6$ (i) Total no. of committees containing at least 3 women \& 2 men are given by $\begin{aligned} & =\left(10 c_{3} \times 7 c_{3}\right)+\left(10 c_{4} \times 7 c_{2}\right) \\ & =4200+4410=8610 \end{aligned}$ (ii) No. of committees in which 2 particular women sure on the same committee $\begin{aligned} & =\left(10 c_{4} \times 2 c_{2}\right)+\left(10 c_{3} \times 2 c_{2} \times 5 c_{1}\right) \\ & =210+600=810 \end{aligned}$	

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

StudiesToday.

	(iii) Required no. of committees in which 2 particular women d not came together $=$ Total - together $=8610-810$ $=7800$ ans.	

