Downloaded from www.studiestoday.com

-	Downloaded Iron
	Studies Today.com

		-
Q.60)	Find the number of ways in which six '+' and four '-' signs can be arranged in a	
	line such that no 2 signs '-' occur together?	
Sol.60)	'+' = 6 , '-' = 4	
	$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$	
	There are seven places available for four '-' signs, which they can be arranged	
	in = $\frac{7p_4}{4!}$ ways (since, all '-' signs are similarly)	
	Five '+' signs can mutually arranged in = $\frac{5!}{5!} = 1 way$	
	Required no. of ways = $\frac{7p_4}{4!} \times 1$	
	$= \frac{71}{3!4!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 4 \times 3 \times 2 \times 1}$	
0.61)		
Q.61)	Find the number of ways in which we can choose committee from four men &	
	six women so that the committee includes at least two men and exactly twice	
Cal (41)	as many women as men?	
Sol.61)	94 Hint:	
	(4) (6) M W	
	2 4	
	$\begin{vmatrix} 2 & 4 \\ 3 & 6 \end{vmatrix}$	
0.63)		
Q.62)	Ten different letters of alphabet are given words with five letters are formed	
	from these given letters. Then find the number of words which have at least	
Cal (2)	one letter repeated?	
Sol.62)	1. No. of 5 letters words from 10 letters (without any condition) = $10 \times 10 \times 10 \times 10 \times 10 \times 10^5$	
	2. No. of 5 letters words from 10 letters in which 'no' letter will be	
	repeated = 10 x 9 x 8 x 7 x 6	
	3. Required no. of words in which at least 1 letter will be repeated (since,	
	at least one = total – none)	
	$= 10^5 - 10 \times 9 \times 8 \times 7 \times 6 = 697660$ ans.	
Q.63)	There are 10 lamps in a hall. Each one of them can be switched on	
	independently. Find the number of ways in which the hall can be illuminated?	
Sol.63)	Each lamp can be switched on and off in 2 ways	
	∴ for ten lamps, no. of ways	
	$2 \times 2 \times$	
	Out of these 2 ¹⁰ ways, there is one way in which all lamps get switched off	
	Required no. of ways to illuminate the hall	
	$=2^{10}-1$	
	= 1024 – 1 = 1023 ans.	
Q.64)	A five digit number divisible by 3 is to be formed using the numbers 0,1,2,3,4,5	
	without repetitions. Find total no. of ways this can be done?	
Sol.64)	We know that no. is divisible by 3, if sum of all digits divisible by 3	
	There are two cases:	
	Case:1) 5 digit numbers can be formed using the digits 0,1,2,3,4,5	
	4 4 3 2 1 = 4 x 4 x 3 x 2 x 1 = 96	
	Case:2) 5 digit numbers can be formed using the digit 1,2,3,4,5	
	5 4 3 2 1 = 5 x 4 x 3 x 2 x 1 = 120	

Downloaded from www.studiestoday.com

-	Downloaded Irol
	Studies Today.com

	Since, sum of digits in these cases is divisible by 3	
0.65\	: required no. of ways = 120 + 96 = 216 ans.	
Q.65)	The number 5-digit telephone number having at least one of their digit is	
	repeated?	
Sol.65)	90,000 – (9x9x8x7x6) = 30,240 ans.	
Q.66)	In a football championship, 153 matches were played. Every 2 teams played	
	one match with each other. The number of teams participating in the	
	championship?	
Sol.66)	18	
	HINT : n_{c_2} = 153, find n	
Q.67)	A lady gives a dinner party for 6 guests. Find the number of ways in which they	
	may be selected from among 10 friends if 2 of the friend will not attend the	
	party together?	
Sol.67)	140	
	HINT: not together= total – together	
	$= 10_{c_6} - 2_{c_2} \times 8_{c_4}$	
Q.68)	We wish to select 6 persons from 8, but if the person A is chosen then B must	
	be chosen. In how many ways can the selection be made?	
Sol.68)	22	
	HINT: Case:1) A is chosen = 6_{c_4} , case:2) A is not chosen = 7_{c_6}	
Q.69)	Find the maximum number of points of intersection of 8 straight lines in a	
	plane?	
Sol.69)		28
	×O	Hint: 8_{c_2}
Q.70)	In how many ways can the letters of the word PERMUTATIONS be arranged, if	
	there are always 4 letters between P and S?	
Sol.70)	7/0	25401600
	MININ SUIO	