Downloaded from www.studiestoday.com

Downloaded not	
StudiesToday.com	

Q.71)	For the post of the 5 teachers, there are 23 applicants. 2 posts are reserved for	
	SC candidates & there are 7 SC candidates among the applicant. In how many ways can the selection be made?	
Sol.71)	·	11760
		Hint:
		$7_{c_2}x$
		16_{c_3}
Q.72)	In a plane there are 37 straight lines of which 13 pass through the point A and	3
,	11 pass through the point B. no three lines pass through one point, no line	
	passes through both points A and B and no 2 lines are parallel.	
	Find the no. of points of intersection of the straight lines?	
Sol.72)	1. Total no. of points of intersection of 37 lines = $37c_2$	
,	2. 13 lines passes through the same point A, \therefore instead of $13c_2$ points we	
	get only one point i.e. A	
	3. Also 11 lines passes through the same point B, \div instead of $11c_2$ points	
	we get only one point i.e. B	
	4. \therefore required number of points of intersections = $37c_2 - 13c_2 \cdot 11c_2 + 2 =$	
	666-78-55+2 = 535 ans.	
Q.73)	Show that n_{c_r} + $n_{c_{r-1}}$ = $n_{c_{r+1}}$	
Sol.73)	L.H.S	
•	$= n_{c_r} + n_{c_{r-1}}$	
	$=\frac{n!}{n!}$	
	r!(n-r)! $(r-1)!(n-r+1)!$	
	$\begin{aligned} &r!(n-r)! & (r-1)!(n-r+1)! \\ &= n! \left[\frac{1}{r!(n-r)!} + \frac{1}{(r-1)!(n-r+1)!} \right] \\ &= n! \left[\frac{1}{r(r-1)!(n-r)!} + \frac{1}{(r-1)!(n-r+1)(n-r)!} \right] \\ &= n! \left[\frac{n-r+1+r}{r(r-1)!(n-r)(n-r+1)!} \right] \\ &= \frac{n!(n+1)}{r!(n-r+1)!} = \frac{(n+1)!}{r!(n-r+1)!} = {}^{n+1}C_r \text{ proved.} \end{aligned}$	
	$= n \left[\frac{1}{1} + \frac{1}{1} \right]$	
	$= n! \left \frac{n-r+1+r}{r(r-1)!(n-r)(n-r+1)!} \right $	
	$-\frac{n!(n+1)}{n+1} - \frac{(n+1)!}{n+1} - \frac{n+1}{n+1} $	
	$r!(n-r+1)! - r!(n-r+1)! - c_r \text{ proved},$	
Q.74)	Find the no. of permutations of Full distinct things taken Fulgether in which s	
	particular things must occur together?	
Sol.74)	1. Consider 3 particular things as 1	
	2. Now, we have to select (r-3) things from (n-3) things which can be	
	selected in ⁿ⁻³ c _{r-3} ways	
	3. Now, we have arrange (r-3)+1 things i.e. (r-2) which can be arranged in	
	(r-2)! Ways	
	4. Three particular things can mutually arranged in 3! Ways	
	5. Required no. of arrangements = $^{n-3}c_{r-3} \times (r-2)! \times 3! \text{ Ans.}$	
Q.75)	Given 11 points, of which 5 lie on one circle, other than these 5, no lie on one	
	circle. Then the no. of circles that can be drawn so that each contains at least 3	
	of the given points?	
C 1 75\	Figure: 2	
Sol.75)	1. No. of circles contains three points from remaining 6 points = $6c_3$ =	
	$\frac{6x5x4}{6} = 20$	
	2. No. of circles containing 3 points (1 from 1 to 5 and 2 from 6 to 11)	
	$=5c_1 \times 6c_2 = 5 \times 15 = 75$	
	3. No. Of circle containing 3 points (2 from 1 to 5 and 1 from 6 to 11)	
	$=5c_2 \times 6c_1 = 10 \times 6 = 60$	
	4. No. of circle containing 5 points (1 to 5) = 1	
	∴ total no. of circles = $20 + 75 + 60 + 1 = 156$ ans.	
Q.76)	Find the total no. of ways in which 'n' distinct objects can be put into 2 different	

Downloaded from www.studiestoday.com

Studies Today	com

that no box remains empty? ach object can be put either in box1 or box2 here are two choices for each object or 'n' objects no. of choices/ways = $2x2x2n$ times = 2^n out of these ways, there are 2 ways in which either box1 or box2 emains empty otal no. of ways = 2^n - 2 ans. es the no. of permutations of (x+2) things taken all at a time, b is the mutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = $182bc$. Find the ? no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? 1, n) + p(2n + 1, n - 1) = 227 . Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation all the digits are distinct?	X=12 2880 N=10
there are two choices for each object or 'n' objects no. of choices/ways = $2x2x2n$ times = 2^n but of these ways, there are 2 ways in which either box1 or box2 emains empty otal no. of ways = $2^n - 2$ ans. The estimates the no. of permutations of (x+2) things taken all at a time, b is the emutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = $182bc$. Find the ? The end of no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? The end of natural numbers smaller than 10^4 , in the decimal rotation in the end of the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
or 'n' objects no. of choices/ways = $2x2x2n$ times = 2^n but of these ways, there are 2 ways in which either box1 or box2 emains empty otal no. of ways = $2^n - 2$ ans. The estimate of the emutations of $(x+2)$ things taken all at a time, b is the emutations of x things taken 11 at a time and c the number of ions of $(x-11)$ things taken all at a time such that $a = 182bc$. Find the $a = 182bc$ in o. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? The end of natural numbers smaller than $a = 10^n$ in the decimal rotation in the end of $a = 10^n$ in the decimal rotation.	2880
tut of these ways, there are 2 ways in which either box1 or box2 emains empty otal no. of ways = 2^n - 2 ans. The set he no. of permutations of (x+2) things taken all at a time, b is the mutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = 182bc. Find the ? The no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? The p(2n+1,n-1) = 227. Find the value of n? The the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
emains empty otal no. of ways = 2^n - 2 ans. es the no. of permutations of (x+2) things taken all at a time, b is the mutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = 182bc. Find the ? no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? 1, n)+p(2n+1, n-1) = 227. Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
es the no. of permutations of (x+2) things taken all at a time, b is the mutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = 182bc. Find the ? no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? 1, n) + p (2 n + 1, n - 1) = 227. Find the value of n ? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
es the no. of permutations of (x+2) things taken all at a time, b is the mutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = 182bc. Find the ? no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? $1,n)+p(2n+1,n-1)=227$. Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
mutations of x things taken 11 at a time and c the number of ions of (x-11) things taken all at a time such that a = 182bc. Find the ? no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? $1,n)+p(2n+1,n-1)=227$. Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
ions of (x-11) things taken all at a time such that a = 182bc. Find the ? no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? $1,n)+p(2n+1,n-1)=227$. Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? $1,n)+p(2n+1,n-1)=227.$ Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
no. of ways in which 5 boys & 3 girls be seated in a row so that each ween 2 boys? $1,n)+p(2n+1,n-1)=227.$ Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
ween 2 boys? $1,n)+p(2n+1,n-1)=227. \ \text{Find the value of n?}$ e the no. of natural numbers smaller than 10^4 , in the decimal rotation	2880
ween 2 boys? $1,n)+p(2n+1,n-1)=227. \ \text{Find the value of n?}$ e the no. of natural numbers smaller than 10^4 , in the decimal rotation	
(1,n)+p(2n+1,n-1)=227. Find the value of n? e the no. of natural numbers smaller than 10^4 , in the decimal rotation	
e the no. of natural numbers smaller than 10^4 , in the decimal rotation	
e the no. of natural numbers smaller than 10^4 , in the decimal rotation	N=10
	N-10
	IN=TO
all the digits are distinct?	
	5274
MMM Studies to day	
	MN. Studile

Downloaded from www.studiestoday.com

Studies Today	com

Q.81)	'm' men & 'n' women are seated in a row so that no two women sit together. If m>n	
	then show that number of ways in which they can be seated as $\frac{m!(m+1)!}{(m-n+1)!}$	
Sol.81)		
Q.82)	The no. of different ways in which 8 persons can stand in a row so that between 2	
	particular persons A and B there are always 2 persons is (a) 60 x 5!, (b) 15 x 4! x 5!, (c)	
	4! X 5! , (d) none?	
Sol.82)		(a)
Q.83)	Show that $^{2n}c_n = 2^n \frac{(1,2,3(2n-1))}{n!}$	
Q.83) Sol.83)	Show that $^{2n}c_n = 2^n \frac{(1,2,3(2n-1))}{n!}$	
	Show that $^{2n}c_n = 2^n \frac{(1,2,3(2n-1))}{n!}$ In how many ways can 21 identical books on English & 19 identical books on 'Hindi' be	
Sol.83)	n:	

MMM studiestoday.com