	PERMUTATIONS \& COMBINATIONS
	BASICS:-
	Permutations: No of ways of arrangement of objects. Combinations: No of ways of selection of objects. ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ where, $\mathrm{n} \rightarrow$ No of items /objects available. $r \rightarrow$ No of items /objects to be arranged. ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$ where, $\mathrm{n} \rightarrow$ No of items /objects available. $r \rightarrow$ No of items /objects to be selected. Relation between ${ }^{n} P_{r}$ and ${ }^{n} C_{r}$:- ${ }^{n} P_{r}={ }^{n} C_{r} \times r!$ Note: Mainly two operations:- Addition (+): when or/option/cases. Multiplication (x) : when and/ compulsion/selection or arrangement not completed. Shortcuts of ${ }^{n} C_{r}$:- ${ }^{n} \mathrm{C}_{0}=1$ E.g. $\quad{ }^{7} C_{0}=1$. ${ }^{n} C_{1}=n$ E.g. $\quad{ }^{7} \mathrm{C}_{1}=7$. ${ }^{\mathrm{n}} \mathrm{C}_{2}=\frac{n(n-1)}{2}$ E.g. $\quad{ }^{7} C_{2}=\frac{7 x 6}{2}=21$ ${ }^{n} \mathrm{C}_{3}=\frac{n(n-1)(n-2)}{6}$ E.g. $\quad{ }^{7} \mathrm{C}_{3}=\frac{7 \times 6 \times 5}{6}=35$ ${ }^{n} C_{n}=1$ E.g. ${ }^{7} \mathrm{C}_{7}=7$ ${ }^{n} C_{r}={ }^{n} C_{n-r}$ E.g. $\quad{ }^{10} \mathrm{C}_{8}={ }^{10} \mathrm{C}_{2} ;{ }^{20} \mathrm{C}_{19}={ }^{20} \mathrm{C}_{1}$ If ${ }^{n} C_{x}={ }^{n} C_{y}$ then $x=y=x$ (or) $x=y$
Q.1)	How many 3 digit even numbers can be made using the digits $1,2,3,4,6,7$. If no digit is repeated?
Sol.1)	Digits available: 1,2,3,4,6,7 Required: 3-digit even number $(2,4,6)$ $\begin{array}{\|l\|l\|l\|} \hline 5 & 4 & 3 \\ \hline \end{array}$ 1. The last place (unit place) can be filled in 3 ways. 2. The first place (hundred) can be filled in 5 ways. 3. The middle place (ten's) can be filled in 4 ways \therefore the required no of 3-digit even numbers that can be formed $=5 \times 4 \times 3=60$ ans.
Q.2)	How many 6 -digit numbers can be formed from the digits $0,1,3,5,7,9$. Which are divisible by 10 when:- (i) Repeat of digits not allowed (ii) Repeat of digits allowed
Sol.2)	Digits available $0,1,3,5,7,9$ Required: 6- digit no.s divisible by 10 1. when repeated of digits not allowed:-

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

	no.s that can be formed $=8 \times 1 \times 9=72$ 3. let 7 in the hundred place no.s that can be formed $=1 \times 9 \times 9=81$ \therefore The required numbers $=72+72+81=225$ ans.				
Q.5)	How many numbers are there between 100 and 1000 such that atleast one of the their digit is 7 ?				
Sol.	100 < required no < 1000 $\therefore \quad$ it must be a 3-digit numbers digits available: 0 to 9 Repeated of digits allowed:- (i) 3 digit no.s having at least one digit is $7=$ (total no of 3 digit numbers) $-(3$ digit numbers in which 7 does not appear at all) (ii) Total no. of 3 digit numbers:- $=9 \times 10 \times 40=900$ but it contains the number 100 \therefore Numbers are 900-1 (1 for 100) $=899$ (iii) 3 digit numbers in which 7 does not appear at all: but it contains the number 100 \therefore Numbers are 648-1 $(1$ for 100$)=647$ \therefore The required 3 digits no.s are $=899-647=252$ ans.				
Q.6)	How many 3 digit even numbers can be found such that if 5 is one of the digit then 7 must be the next digit?				
Sol.6)	Required: 3 digit (even numbers) Digits available: 0 to 9 There are two cases: Case 1: Let the no. 5 comes: if 5 comes then it can be only in the hundred place, then 7 must be the ten's place. The last digit must be an even number, \therefore it can be filled in 5 ways \therefore the no.s can be formed $=1 \times 1 \times 5=5$ Case 1: Let the no. 5 do not comes: No.s that can be formed $=8 \times 9 \times 5=360$ \therefore the required 3-digit no.s are $=5+360=365$ ans.				
Q.7)	Find the sum of all the numbers that can be formed with the digits $2,3,4,5$ taken all at a time.?				
Sol.7)	Digits available: $2,3,4,5$ Required: 4 digit numbers (\because we have to use all the available digits) (i) The total four digit numbers that can be formed using the given digits are				

Copyright © www.studiestoday.com
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

StudiesToday on

	$=4 \times 3 \times 2 \times 1=24$ (ii) To find the sum of these 24 nos, we will find the sum of digits at unit's place, ten's place, hundred place and thousands place (iii) In units place, each digit ($2,3,4,5$) occurs 6 times \therefore the sum of these digits in units place $=2 \times 6+3 \times 6+5 \times 6=84$ (iv) Similarly, the sum of the all digits in ten's place $=84$ the sum of the all digits in hundred place $=84$ the sum of the all digits in thousand place $=84$ \therefore the sum of all 24 numbers is given by $\begin{aligned} & =84\left(10^{3}+10^{2}+10^{1}+10^{0}\right) \\ & =84(1000+100+10+1) \\ & =84(1111)=93324 \text { ans. } \end{aligned}$
Ques.8)	How many numbers greater than 1000000 can be formed using the digits 1,2,0,2,4,2,4,?
Sol.8)	Required: 7-digit numbers Digits available: $\quad 1,2,0,2,4,2,4$ (i) The required seven digits no.s $=$ (Total no of 7 digit numbers) - (no.s starting with 0) (ii) The total 7 digits numbers that can be formed are $=\frac{7!}{3!2!}=\frac{5040}{6 \times 2}=420$ (iii) The no. starting with ' 0 ': Let ' 0 ' is the first place, then remaining 6 digits can be arranged in $=\frac{6!}{3!2!}=\frac{720}{6 \times 2}$ $=60$ \therefore the required no.s are $=420-60=360$ ans.
Ques.9)	How many 4 digit numbers divisible by 5 using the digits 0 to 9 when (i) Repeated of digits not allowed (ii) Repeated of digits allowed
Sol.9)	Digits available 0 t0 9 Required 4 digit no.s divisible by 5 1. Repeated of digits not allowed: For numbers divisible by 5 , the last digit can be 0 or 5 Two Cases: (i) Numbers ending with ' 0 ' No.s that be formed $=9 \times 8 \times 7 \times 1=504$ (ii) Numbers ending with ' 5 ' \therefore required 4 digits no.s which are divisible by $5=504+448=952$ ans. (iii) Repeated of digit allowed a) Unit's place can be filled in 2 ways $(0,5)$ b) Thousand place can be filled 9 ways (0 not allowed) c) Hundred place can be filled in 10 ways d) Ten's place can be filled in 10 ways \therefore required 4 digit no.s which are divisible by $5=9 \times 10 \times 10 \times 2=1800$ ans.
Q.10)	How many numbers are there between 100 and 100 such that every digit is either 2 or 9 ?

StudiesToday

Sol.10)	100 < required number < 1000

It must be a 3 digit numbers
Digits available $=2$ and 9

$(2,9)$	$(2,9)$	$(2,9)$
2	2	2

(i) The first place (hundred) can be filled in 2 ways
(ii) The second place (ten's) can be filled in 2 ways
(iii) The third place (unit's) can be filled in 2 ways
\therefore the required 3-digits no.s $=2 \times 2 \times 2=8$ ans.

