Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Limits \& Derivatives Class $11^{\text {th }}$
Q.1)	If $y=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots \ldots .$. . Find $\frac{d y}{d x}$
Sol.1)	We have $y=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots \ldots$ \qquad Differentiate both sides w.r.t x $\begin{aligned} & \frac{d y}{d x}=0+\frac{1}{1!}+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\ldots . . \infty \\ & \frac{d y}{d x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots . . \infty \\ & \frac{d y}{d x}=y \ldots \text { From eq. (i) ans. } \end{aligned}$
Q.2)	Evaluate $\lim _{x \rightarrow 3^{+}}\left(\frac{x}{[x]}\right)$
Sol.2)	$\begin{aligned} & \text { Put } x=3+h \& h \rightarrow 0 \\ & =\lim _{h \rightarrow 0}\left(\frac{3+h}{[3+h]}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{3+h}{3}\right) \ldots\left\{\begin{array}{l} {[3.1]=3} \\ {[3.01]=3} \end{array}\right\} \\ & =\frac{3}{3}=1 \text { ans. } \end{aligned}$
Q.3)	If $\lim _{x \rightarrow 0}\left(\sin (m x) \cot \frac{x}{\sqrt{3}}\right)=2$. Find m
Sol.3)	We have $\lim _{x \rightarrow 0}\left(\sin (m x) \cot \frac{x}{\sqrt{3}}\right)=2$ $\begin{aligned} & =\lim _{x \rightarrow 0}\left(\frac{\sin (m x)}{\tan \left(\frac{x}{\sqrt{3}}\right)}\right)=2 \\ & =\lim _{x \rightarrow 0}\left(\frac{\frac{\sin (m x)}{m x} \times m x}{\frac{\tan \left(\frac{x}{\sqrt{3}}\right)}{\left(\frac{x}{\sqrt{3}}\right)} \times \frac{x}{\sqrt{3}}}\right)=2 \\ & =\frac{1 \times m}{1 \times \frac{1}{\sqrt{3}}=2} \\ & =\sqrt{3} m=2 \\ & =m=\frac{2}{\sqrt{3}} \text { ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Q.4)	If $f(x)=1-x+x^{2}-x^{3} \ldots \ldots-x^{99}+x^{100}$
Sol.4)	We have $f(x)=1-x+x^{2}-x^{3} \ldots . . .-x^{99}+x^{100}$ Differentiate both sides w.r.t x $\begin{aligned} & f^{\prime}(x)=0-1+2 x-3 x^{2} \ldots \ldots \ldots-99 x^{99}+100 x^{100} \\ & f^{\prime}(1)=-1+2-3 \ldots \ldots-99+100 \\ & f^{\prime}(1)=-(1-3-5 \ldots \ldots .99)+(2+4+6 \ldots \ldots .100) \\ & \quad=-(1+3+5 \ldots . .99)+(2+4+6 \ldots .100) \\ & \text { A.P. } a=1, d=2, n=50 \quad \text { A.P. } a=2, d=2, n=50 \\ & =-\frac{50}{2}[2+(49) 2]+\frac{50}{2}[4+49 \times 2] \\ & =-25(100)+25(102) \\ & =-2500+2550 \\ & f^{\prime}(1)=50 \text { ans. } \end{aligned}$
Q.5)	Let $f(x)=\left\{\begin{array}{l}x^{2}-1: a<x<2 \\ 2 x+3: 2 \leq x<3\end{array}\right\}$ find the quadratic curve whose roots are $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$
Sol.5)	$\begin{aligned} & \lim _{x \rightarrow 2^{-}} f(x) \\ & =\lim _{x \rightarrow 2^{-}}\left(x^{2}-1\right) \\ & \text { Put } x=2-h \& h \rightarrow 0 \\ & =\lim _{h \rightarrow 0}\left((2-h)^{2}-1\right)=4-1=3 \end{aligned}$ Now $\lim _{x \rightarrow 2^{+}}(2 x+3)$ Put $x=2+h \& h \rightarrow 0$ $\lim _{h \rightarrow 0}(2(2+h)+3)=4+3=7$ Given $3 \& 7$ are the roots of the quadratic curve $x^{2}-($ sum of sum of roots) $\times+$ product of $\text { roots }=0$ $x^{2}-(3+7) x+21=0$ $x^{2}-10 x+21$ ans.
Q.6)	Evaluate $\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{\sqrt{1-\cos (6 x)}}{\sqrt{2}\left(\frac{\pi}{3}-x\right)}\right)$
Sol.6)	We have $\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{\sqrt{1-\cos (6 x)}}{\sqrt{2}\left(\frac{\pi}{3}-x\right)}\right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$-x^{5}+1$ $\frac{-\left(-x^{5}-x^{4}\right)}{-x^{4}+1}$ $\frac{-\left(-x^{4}+x^{3}\right)}{-x^{3}+1}$ $\frac{-\left(-x^{3}+x^{2}\right)}{-x^{2}+1}$ $\frac{-\left(-x^{2}+x\right)}{-x+1}$ $\frac{-x+1}{\mathrm{x}}$ $\therefore \lim _{x \rightarrow 1} \frac{(x-1)\left(x^{6}+x^{5}-x^{4}-x^{3}-x^{2}-x-1\right)}{(x-1)\left(x^{2}-2 x-2\right)}$ $=\frac{1+1-1-1-1-1-1}{1-2-2}=\frac{2-5}{-3}=\frac{-3}{-3}=1$ ans.
Q.9)	Evaluate $\lim _{x \rightarrow 0}\left(\frac{\|\sin x\|}{x}\right)$
Sol.9)	$\begin{aligned} & \text { L.H.L. } \lim _{x \rightarrow 0}\left(\frac{\|\sin x\|}{x}\right) \\ & \text { Put } x=0-h=-h \& h \rightarrow 0 \\ & \lim _{h \rightarrow 0}\left(\frac{\|\sin (-h)\|}{-h}\right)=-1 \\ & \text { R.H.L. } \lim _{x \rightarrow 0}\left(\frac{\|\sin x\|}{x}\right) \\ & \text { Put } x=0+h=h \\ & \lim _{h \rightarrow 0}\left(\frac{\|\sin h\|}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right) \\ & \therefore \lim _{x \rightarrow 0} f(x) \text { does not exists } \\ & \text { L.H.L } \neq \text { R.H.L. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

