Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Limits \& Derivatives Class XI
	Limits:-
Q.1)	If $f(x)=\left\{\begin{array}{c}5 x-4 ; 0<x<1 \\ 4 x^{3}-3 x ; 1<x<2\end{array}\right.$ Evaluate $\lim _{x \rightarrow a} f(x)$
Sol.1)	For L.H.L. : $f(x)=5 x-4$ For R.H.L: $f(x)=4 x^{3}-3 x$ L.H.L. $=\lim _{x \rightarrow 1^{-}}(5 x-4)$ Put $x=1-h \& h \rightarrow 0$ $\begin{aligned} & \therefore \text { L.H.L. }=\lim _{h \rightarrow 0}(5(1-h)-4) \\ & \Rightarrow \text { L.H.L }=5-4=1 \\ & \therefore \text { L.H.L. }=1 \end{aligned}$ Now, R.H.L. $=\lim _{x \rightarrow 1^{+}}\left(4 x^{3}-3 x\right)$ Put $x=1+h \& h \rightarrow 0$ $\begin{aligned} & \therefore \text { R.H.L. }=\lim _{h \rightarrow 0}\left[4(1+h)^{3}-3(1+h)\right] \\ & \Rightarrow \text { R.H.L }=4(1)^{3}-3(1)=1 \\ & \therefore \text { R.H.L. }=1 \end{aligned}$ Since, L.H.L. $=$ R.H.L. $=1$ $\therefore \lim _{x \rightarrow 1} f(x)$ Exists \& $\lim _{x \rightarrow 1} f(x)=1$ ans.
Q.2)	If $f(x)=\left\{\begin{array}{c}\frac{x-\|x\|}{x} ; x \neq 0 \\ 2 ; x=0\end{array}\right.$ Show that $\lim _{x \rightarrow 0} f(x)$ does not exists.
Sol.2)	Here, for L.H.L. \& R.H.L. $\begin{aligned} & f(x)=\left\{\frac{x-\|x\|}{x}\right. \\ & \text { L.H.L. }=\lim _{x \rightarrow 0^{-}}\left[\frac{x-\|x\|}{x}\right] \\ & \text { Put } x=0-h=-h \& h \rightarrow 0 \\ & \therefore \text { L.H.L. }=\lim _{h \rightarrow 0}\left(\frac{-h-\|-h\|}{-h}\right) \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow \text { L.H.L. }=\lim _{h \rightarrow 0}\left(\frac{-h-h}{-h}\right)=\lim _{h \rightarrow 0}\left(\frac{-2 h}{-h}\right) \\ & \Rightarrow \lim _{h \rightarrow 0}(2) \\ & \therefore \text { L.H.L. }=2 \end{aligned}$ Now, R.H.L. $=\lim _{x \rightarrow 0^{+}}\left[\frac{x-\|x\|}{x}\right]$ Put $x=0+h=h \& h \rightarrow 0$ $\begin{aligned} & \therefore \text { R.H.L. }=\lim _{h \rightarrow 0}\left(\frac{h-\|-h\|}{-h}\right)=\lim _{h \rightarrow 0}\left(\frac{h-h}{h}\right) \\ & \Rightarrow \text { R.H.L. }=\lim _{h \rightarrow 0}\left(\frac{0}{h}\right)=\lim _{h \rightarrow 0}(0)=0 \\ & \therefore \text { R.H.L. }=0 \end{aligned}$ Clearly L.H.L. $=$ R.H.L. $\therefore \lim _{x \rightarrow 0} f(x)$ does not exists ans.
Q.3)	$f(x)=\left\{\begin{array}{l} \frac{4 x-5}{x-4} ; x \leq 2 \\ x-\pi ; x>2 \end{array}\right.$ Find value of π if $\lim _{x \rightarrow 2} f(x)$ exists.
Sol.3)	$\begin{aligned} & \text { For L.H.L. } f(x)=4 x-5 \\ & \text { For R.H.L. } f(x)=x-\pi \\ & \text { L.H.L. }=\lim _{x \rightarrow 2^{+}}(4 x-5) \\ & \text { Put } x=2-h \& h \rightarrow 0 \\ & \Rightarrow \text { L.H.L. }=\lim _{h \rightarrow 0}(4(2-h)-5)=\lim _{h \rightarrow 0}(8-5) \\ & \Rightarrow \text { L.H.L. }=\lim _{h \rightarrow 0}(3) \\ & \Rightarrow \text { L.H.L. }=3 \\ & \text { Now, R.H.L. }=\lim _{x \rightarrow 2^{+}}(x-\pi) \\ & \text { Put } x=2+h \text { and } h \rightarrow 0 \\ & \Rightarrow \text { R.H.L. }=\lim _{h \rightarrow 0}(2+h-\pi)=\lim _{h \rightarrow 0}(2-\pi) \\ & \therefore \text { R.H.L. }=2-\pi \\ & \text { Since, L.H.L. }=\text { R.H.L. }=1 \\ & \therefore \lim _{x \rightarrow 2} f(x) \text { exists (given) } \\ & \therefore \text { L.H.L. }=\text { R.H.L. } \\ & \Rightarrow 3-2 \pi \Rightarrow \pi=-1 \text { ans. } \end{aligned}$
Q.4)	Show that $\lim _{x \rightarrow 0}\left(\frac{e^{1 / x-1}}{e^{1 / x+1}}\right)$ does not exists.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Sol.4)	For L.H.L. \& R.H.: $f(x)=\left(\frac{e^{1 / x-1}}{e^{1 / x+1}}\right)$ $\text { L.H.L. }=\lim _{x \rightarrow 0^{-}}\left(\frac{e^{1 / x-1}}{e^{1 / x+1}}\right)$ Put $x=0-h=-h \& h \rightarrow 0$ $\therefore \text { L.H.L. }=\lim _{h \rightarrow 0}\left(\frac{e^{1 / x}-1}{e^{1 / x+1}}\right)$ Put directly $h=0$ $\begin{array}{ll} \Rightarrow \text { L.H.L }=\frac{e^{-\infty}-1}{e^{-\infty}+1}=\frac{0-1}{0+1} & e^{-\infty}=0 \\ \Rightarrow \text { L.H.L. }=-1 & \end{array}$ Now, R.H.L. $=\lim _{x \rightarrow 0^{+}}\left(\frac{e^{1 / x-1}}{e^{1 / x+1}}\right)$ Put $x=0+h=h \& h \rightarrow 0$ $\therefore \text { R.H.L. }=\lim _{h \rightarrow 0}\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)$ (don't put directly $h=0$) $\frac{\infty}{\infty} \text { form }$ \Rightarrow R.H.L. $=\lim _{h \rightarrow 0}\left(\frac{1-\frac{1}{e^{1 / h}}}{1+\frac{1}{e^{1 / h}}}\right)$ divide by $e^{1 / h}$ $\Rightarrow \text { R.H.L. }=\lim _{h \rightarrow 0}\left(\frac{1-e^{-1 / h}}{1+e^{-1 / h}}\right)$ Put $h=0$ $\begin{aligned} & \Rightarrow \text { R.H.L. }=\lim _{h \rightarrow 0}\left(\frac{1-e^{-\infty}}{1+e^{-\infty}}\right)=\frac{1-0}{1+0} e^{-\infty}=0 \\ & \Rightarrow \text { R.H.L. }=1 \end{aligned}$ Since, L.H.L. \neq R.H.L. $=1$ $\therefore \lim _{x \rightarrow 0} f(x)$ does not Exists ans.
Q.5)	$f(x)=\left\{\begin{array}{c} a+b x ; x<1 \\ 4 ; x=1 \\ b-a x ; x>1 \end{array}\right.$ and if $\lim _{x \rightarrow 1} f(x)=f(1)$, what are possible values of $a \& b$?
Sol.5)	```For L.H.L. \(f(x)=a+b x\) For R.H.L. \(f(x)=b-a x\) and \(f(1)=4 \quad\) (when \(x=1 ; f(x)=4\)) given, \(\lim _{x \rightarrow 1} f(x)=f(1)\) \(\Rightarrow \lim _{x \rightarrow 1} f(x)=4\)```

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow \text { L.H.L. }=\text { R.H.L. }=4 \\ & \Rightarrow \lim _{x \rightarrow 1^{-}}(a+b x)=\lim _{x \rightarrow 1^{+}}(b-a x)=4 \\ & \text { Put } x=1-h \quad \text { Put } x=1+h \\ & \& h \rightarrow 0 \quad \& h \rightarrow 0 \\ & \Rightarrow \lim _{h \rightarrow 0}(a+b(1-h))=\lim _{h \rightarrow 0}(b-a(1+h))=4 \\ & \Rightarrow a+b=b-a=4 \\ & \Rightarrow a+b=4 \& b-a=4 \end{aligned}$ Solving we get $a=0 \& b=4$ ans.
Q.6)	$f(x)=\left\{\begin{array}{c} m x^{2}+n ; x<0 \\ n x+m ; 0 \leq x \leq 1 \\ n x^{3}+m ; x>1 \end{array}\right.$ For what integers m and n does the $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ exists.
Sol.6)	Given that $\lim _{x \rightarrow 0} f(x)$ exists For L.H.L. $f(x)=n x+m$ L.H.L=R.H.L. $\Rightarrow \lim _{x \rightarrow 0^{-}}\left(m x^{2}+n\right)=\lim _{x \rightarrow 0^{+}}(n x+m)$ Put $x=0-h=-h$ Put $x=0+h=h$ $\& h \rightarrow 0$ $\& h \rightarrow 0$ $\begin{align*} & \therefore \lim _{h \rightarrow 0}\left(m(-h)^{2}+n\right)=\lim _{h \rightarrow 0}(n(h)+m) \\ & \Rightarrow 0+n=0+m \\ & \Rightarrow=m=n \ldots \ldots \ldots \text { (i) } \tag{i} \end{align*}$ Given that $\lim _{x \rightarrow 0} f(x)$ exists $\text { For L.H.L. } f(x)=n x+m$ For R.H.L. $f(x)=n x^{3}+m$ L.H.L. $=$ R.H.L. $\Rightarrow \lim _{x \rightarrow 1^{-}}(n x+m)=\lim _{x \rightarrow 1^{+}}\left(n x^{3}+m\right)$ Put $x=1-h$ Put $x=1+h$ \& $h \rightarrow 0$ $\& h \rightarrow 0$ $\Rightarrow \lim _{h \rightarrow 0}(n(1-h)+m)=\lim _{h \rightarrow+}\left(n(1+h)^{3}+m\right)$ (put directly $h=0$) $\begin{equation*} \Rightarrow n+m=n+m \tag{ii} \end{equation*}$ From (i) \& (ii)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	m and n can be any integers such that $m=n$ ans.
Q.7)	$f(x)=\left\{\begin{array}{c} \|x\|+1 ; x<0 \\ 0 ; x=0 \\ \|x\|-1 ; x>0 \end{array}\right.$ For what value(s) of a does the $\lim _{x \rightarrow 0} f(x)$ exists.
Sol.7)	For L.H.L. $f(x)=\|x\|+1$ For R.H.L. $f(x)=\|x\|-1$ $\text { L.H.L. }=\lim _{x \rightarrow 0^{-}}(\|x\|+1)$ Put $x=0-h=-h \& h \rightarrow 0$ $\begin{aligned} & \therefore \text { L.H.L. }=\lim _{h \rightarrow 0}(\|-h\|+1)=\lim _{h \rightarrow 0}(h+1)=0+1 \\ & \Rightarrow \text { L.H.L. }=1 \end{aligned}$ Now, R.H.L. $=\lim _{x \rightarrow 0^{+}}(\|x\|-1)$ Put $x=0+h=h \& h \rightarrow 0$ $\therefore \text { R.H.L. } \lim _{h \rightarrow 0}(\|-h\|-1)=\lim _{h \rightarrow 0}(h-1)=0-1$ $\Rightarrow \text { R.H.L. }=-1$ Since L.H.L \neq R.H.L. $\therefore \lim _{x \rightarrow 0} f(x)$ Does not exist. But we are given, $\lim _{x \rightarrow a} f(x)$ exists. From (i) \& (ii) We conclude that a can be any real no. except $a=0$ $\therefore a \in R-\{0\}$ ans.
Q.8)	$f(x)\left\{\begin{array}{l} 2 x+3 ; x \leq 0 \\ 3(x+1) ; x>0 \end{array}\right.$ Evaluate $\lim _{x \rightarrow 1} f(x)$
Sol.8)	$\begin{aligned} & \text { For L.H.L. } f(x)=3(x+1) \\ & \text { Also for R.H.L. } f(x)=3(x+1) \\ & \text { L.H.L. }=\lim _{x \rightarrow 1^{-}} 3(x+1) \\ & \text { Put } x=1-h \& h \rightarrow 0 \\ & \therefore \text { L.H.L. }=\lim _{h \rightarrow 0}(3(1-h+1))=3(2)=6 \\ & \Rightarrow \text { L.H.L. }=6 \\ & \text { Now, R.H.L. }=\lim _{x \rightarrow 1^{+}}(3(x+1)) \\ & \text { Put } x=1+h=h \& h \rightarrow 0 \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \therefore \text { R.H.L. } \lim _{h \rightarrow 0}(3(1+h+1)=3(2)=6 \\ & \Rightarrow \text { R.H.L. }=6 \\ & \text { Since L.H.L }=\text { R.H.L. } \\ & \therefore \lim _{x \rightarrow 0} f(x) \text { Exist and } \lim _{x \rightarrow 1} f(x)=6 \text { ans. } \end{aligned}$
Q.9)	$a_{1}, a_{2}, a_{3} \ldots \ldots \ldots . a_{n}$ are any real numbers $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots \ldots \ldots\left(x-a_{n}\right)$. What is $\lim _{x \rightarrow a} f(x)$? Also compute $\lim _{x \rightarrow a} f(x)$.
Sol.9)	$\begin{aligned} \lim _{x \rightarrow a_{1}} f(x) & =\lim _{x \rightarrow a_{1}}\left[\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots \ldots \ldots .\left(x-a_{n}\right)\right] \\ & =\left(a_{1}-a_{1}\right)\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots \ldots \ldots .\left(a_{1}-a_{n}\right) \\ & =0\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots \ldots \ldots . . a_{1}-a_{n} \\ & =0 \text { ans. } \\ \lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots \ldots \ldots .\left(x-a_{n}\right)\right] \\ & =\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots \ldots \ldots . .\left(a-a_{n}\right) \text { ans. } \end{aligned}$
	TYPE: 2 FACTORIZE Formula: $a^{2}-b^{2}, a^{3}-b^{3}, a^{4}-b^{4}$, quadratic equation, cubic (hit $\&$ trial) L.C.M.
Q.10)	Evaluate : $\lim _{x \rightarrow 1}\left[\frac{x-2}{x^{2}-x}-\frac{1}{x^{3}-3 x^{2}+2 x}\right]$
Sol.10)	We have $\lim _{x \rightarrow 1}\left[\frac{x-2}{x^{2}-x}-\frac{1}{x^{3}-3 x^{2}+2 x}\right]$ $\begin{aligned} & =\lim _{x \rightarrow 1}\left[\frac{x-2}{x(x-1)}-\frac{1}{x\left(x^{2}+3 x+2\right)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{x-2}{x(x-1)}-\frac{1}{x(x-1)(x-2)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(x-2)^{2}-1}{x(x-1)(x-2)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{x^{2}-4 x+4-1}{x(x-1)(x-2)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(x-3)(x-1)}{x(x-1)(x-2)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(x-3)}{x(x-2)}\right] \\ & =\frac{(1-3)}{(1)(1-2)}=\frac{-2}{-1}=2 \text { ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

