

	Class 11 Limits & Derivatives
	Class XI
	Limits:-
Q.1)	If $f(x) = \begin{cases} 5x - 4; 0 < x < 1\\ 4x^3 - 3x; 1 < x < 2 \end{cases}$
	Evaluate $\lim_{x \to a} f(x)$
Sol.1)	For L.H.L. : $f(x) = 5x - 4$
	For R.H.L: $f(x) = 4x^3 - 3x$
	L.H.L. = $\lim_{x \to 1^{-}} (5x - 4)$
	Put $x = 1 - h \& h \to 0$
	\therefore L.H.L. = $\lim_{h\to 0} (5(1-h)-4)$
	$\Rightarrow \text{L.H.L} = \lim_{h \to 0} (3(1-h) - 4)$ $\Rightarrow \text{L.H.L} = 5 - 4 = 1$
	∴ L.H.L.= 1
	Now, R.H.L.= $\lim_{x \to 1^+} (4x^3 - 3x)$
	Put $x = 1 + h \& h \to 0$
	$\therefore \text{R.H.L.} = \lim_{h \to 0} [4(1+h)^3 - 3(1+h)]$
	\Rightarrow R.H.L = $4(1)^3 - 3(1) = 1$
	∴ R.H.L.= 1
	Since, L.H.L. = R.H.L. = 1
	$\therefore \lim_{x \to 1} f(x) \text{ Exists & } \lim_{x \to 1} f(x) = 1 \text{ ans.}$
Q.2)	If $f(x) = \begin{cases} \frac{x- x }{x}; x \neq 0\\ 2; x = 0 \end{cases}$
	Show that $\lim_{x\to 0} f(x)$ does not exists.
Sol.2)	Here, for L.H.L. & R.H.L.
	$f(x) = \left\{ \frac{x - x }{x} \right\}$
	$L.H.L. = \lim_{x \to 0^-} \left[\frac{x - x }{x} \right]$
	Put $x = 0 - h = -h \& h \to 0$
	$\therefore \text{L.H.L.} = \lim_{h \to 0} \left(\frac{-h - -h }{-h} \right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	\Rightarrow L.H.L. $=\lim_{h\to 0} \left(\frac{-h-h}{-h}\right) = \lim_{h\to 0} \left(\frac{-2h}{-h}\right)$
	$\Rightarrow \lim_{h \to 0} (2)$
	∴ L.H.L.= 2
	Now, R.H.L. = $\lim_{x\to 0^+} \left[\frac{x- x }{x}\right]$
	Put $x = 0 + h = h \& h \to 0$
	$\therefore R.H.L. = \lim_{h \to 0} \left(\frac{h - -h }{-h} \right) = \lim_{h \to 0} \left(\frac{h - h}{h} \right)$
	$\Rightarrow \text{R.H.L.} = \lim_{h \to 0} \left(\frac{0}{h} \right) = \lim_{h \to 0} (0) = 0$
	∴ R.H.L.= 0
	Clearly L.H.L. ≠ R.H.L.
	$\lim_{x\to 0} f(x) \text{ does not exists ans.}$
Q.3)	$f(x) = \begin{cases} \frac{4x - 5}{x - 4}; x \le 2\\ x - \pi; x > 2 \end{cases}$
	Find value of π if $\lim_{x\to 2} f(x)$ exists.
Sol.3)	For L.H.L. $f(x) = 4x - 5$
	For R.H.L. $f(x) = x - \pi$
	L.H.L. = $\lim_{x \to 2^+} (4x - 5)$
	Put $x = 2 - h \& h \to 0$
	$\Rightarrow \text{L.H.L.} = \lim_{h \to 0} (4(2-h) - 5) = \lim_{h \to 0} (8 - 5)$
	\Rightarrow L.H.L. $=\lim_{h\to 0}(3)$
	\Rightarrow L.H.L. = 3
	Now, R.H.L. = $\lim_{x \to 2^+} (x - \pi)$
	Put $x = 2 + h$ and $h \to 0$
	\Rightarrow R.H.L. $= \lim_{h \to 0} (2 + h - \pi) = \lim_{h \to 0} (2 - \pi)$
	$\therefore \text{R.H.L.} = 2 - \pi$
	Since, L.H.L. = R.H.L. = 1
	$\therefore \lim_{x \to 2} f(x) \text{ exists (given)}$
	∴ L.H.L. = R.H.L.
	$\Rightarrow 3 - 2\pi \Rightarrow \pi = -1$ ans.
Q.4)	Show that $\lim_{x\to 0} \left(\frac{e^{1/x}-1}{e^{1/x}+1}\right)$ does not exists.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Sol.4) For L.H.L. & R.H.:
$$f(x) = \frac{e^{\frac{1}{2}x-1}}{e^{\frac{1}{2}x+1}}$$

L.H.L. = $\lim_{x\to 0^+} \frac{e^{\frac{1}{2}x-1}}{e^{\frac{1}{2}x+1}}$

Put $x = 0 - h = -h$ & $h \to 0$
 \therefore L.H.L. = $\lim_{h\to 0} \frac{e^{\frac{1}{2}x-1}}{e^{\frac{1}{2}x+1}}$

Put directly $h = 0$
 \Rightarrow L.H.L. = $\frac{1}{e^{-\infty}-1} = \frac{0-1}{0+1}$

Put $x = 0 + h = h$ & $h \to 0$
 \Rightarrow L.H.L. = $\lim_{h\to 0} \frac{e^{\frac{1}{2}x-1}}{e^{\frac{1}{2}x+1}}$

Put $x = 0 + h = h$ & $h \to 0$
 \therefore R.H.L. = $\lim_{h\to 0} \frac{e^{\frac{1}{2}x-1}}{e^{\frac{1}{2}x+1}}$

(don't put directly $h = 0$) $\frac{\infty}{\sigma}$ form

 \Rightarrow R.H.L. = $\lim_{h\to 0} \left(\frac{1-\frac{e^{-1}}{h}}{1+\frac{1}{e^{-1}}h}\right)$ divide by $e^{\frac{1}{2}h}$
 \Rightarrow R.H.L. = $\lim_{h\to 0} \left(\frac{1-e^{-1}h}{1+e^{-1}h}\right)$

Put $h = 0$
 \Rightarrow R.H.L. = $\lim_{h\to 0} \left(\frac{1-e^{-\infty}}{1+e^{-\infty}}\right) = \frac{1-0}{1+0}$ $e^{-\infty} = 0$
 \Rightarrow R.H.L. = 1

Since, L.H.L. \neq R.H.L. = 1
 $\lim_{x\to 0} f(x)$ does not Exists ans.

Q.5)

 $f(x) = \begin{cases} a+bx : x < 1\\ b-ax : x > 1\\ and if $\lim_{x\to 1} f(x) = f(1)$, what are possible values of $a \otimes b$?

Sol.5) For L.H.L. $f(x) = a + bx$

For R.H.L. $f(x) = b - ax$

and $f(1) = 4$ (when $x = 1$; $f(x) = 4$)

given, $\lim_{x\to 1} f(x) = f(1)$
 $\Rightarrow \lim_{x\to 1} f(x) = f(1)$$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	\Rightarrow L.H.L. = R.H.L. = 4
	$\Rightarrow \lim_{x \to 1^{-}} (a + bx) = \lim_{x \to 1^{+}} (b - ax) = 4$
	$Put x = 1 - h \qquad \qquad Put x = 1 + h$
	$\& h \to 0 \qquad \& h \to 0$
	$\Rightarrow \lim_{h \to 0} (a + b(1 - h)) = \lim_{h \to 0} (b - a(1 + h)) = 4$
	$\Rightarrow a + b = b - a = 4$
	$\Rightarrow a+b=4 \& b-a=4$
	Solving we get $a = 0 \& b = 4$ ans.
Q.6)	$f(x) = \begin{cases} mx^2 + n; x < 0 \\ nx + m; 0 \le x \le 1 \\ nx^3 + m; x > 1 \end{cases}$ For what integers m and n does the $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$ exists
	For what integers m and n does the $\lim_{x\to 0} f(x)$ and $\lim_{x\to 1} f(x)$ exists.
Sol.6)	Given that $\lim_{x\to 0} f(x)$ exists
	For L.H.L. $f(x) = nx + m$
	L.H.L=R.H.L.
	$\Rightarrow \lim_{x \to 0^-} (mx^2 + n) = \lim_{x \to 0^+} (nx + m)$
	$Put x = 0 - h = -h \qquad Put x = 0 + h = h$
	$\& h \to 0 \qquad \& h \to 0$
	$\therefore \lim_{h \to 0} (m(-h)^2 + n) = \lim_{h \to 0} (n(h) + m)$
	$\Rightarrow 0 + n = 0 + m$
	$\Rightarrow = m = n \dots (i)$
	Given that $\lim_{x\to 0} f(x)$ exists
	For L.H.L. $f(x) = nx + m$
	For R.H.L. $f(x) = nx^3 + m$
	L.H.L. = R.H.L.
	$\Rightarrow \lim_{x \to 1^{-}} (nx + m) = \lim_{x \to 1^{+}} (nx^{3} + m)$
	$Put x = 1 - h \qquad \qquad Put x = 1 + h$
	$\& h \to 0 \qquad \& h \to 0$
	$\Rightarrow \lim_{h \to 0} (n(1-h) + m) = \lim_{h \to +} (n(1+h)^3 + m)$
	(put directly $h=0$)
	$\Rightarrow n + m = n + m \dots (ii)$
	From (i) & (ii)

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	m and n can be any integers such that $m=n$ ans.
Q.7)	$f(x) = \begin{cases} x + 1; x < 0 \\ 0; x = 0 \\ x - 1; x > 0 \end{cases}$
	For what value(s) of α does the $\lim_{x\to 0} f(x)$ exists.
Sol.7)	For L.H.L. $f(x) = x + 1$
	For R.H.L. $f(x) = x - 1$
	L.H.L. = $\lim_{x \to 0^{-}} (x + 1)$
	Put $x = 0 - h = -h \& h \to 0$
	$ \therefore \text{L.H.L.} = \lim_{h \to 0} (-h + 1) = \lim_{h \to 0} (h + 1) = 0 + 1 $
	⇒ L.H.L. = 1
	Now, R.H.L. = $\lim_{x\to 0^+} (x - 1)$
	Put $x = 0 + h = h \& h \to 0$
	$ \therefore \text{R.H.L.} \lim_{h \to 0} (-h - 1) = \lim_{h \to 0} (h - 1) = 0 - 1 $
	\Rightarrow R.H.L. = -1
	Since L.H.L ≠ R.H.L.
	$\lim_{x\to 0} f(x) \text{ Does not exist.} \dots (i)$
	But we are given, $\lim_{x\to a} f(x)$ exists (ii)
	From (i) & (ii)
	We conclude that a can be any real no. except $a=0$
	$\therefore a \in R - \{0\} \text{ ans.}$
Q.8)	$f(x) \begin{cases} 2x+3; x \le 0 \\ 3(x+1); x > 0 \end{cases}$
	Evaluate $\lim_{x \to 1} f(x)$
Sol.8)	For L.H.L. $f(x) = 3(x+1)$
301.07	Also for R.H.L. $f(x) = 3(x+1)$
	L.H.L. = $\lim_{x \to 1^{-}} 3(x+1)$
	Put $x = 1 - h \& h \rightarrow 0$
	$\therefore \text{L.H.L.} = \lim_{h \to 0} (3(1 - h + 1)) = 3(2) = 6$
	$\Rightarrow L.H.L. = 6$
	Now, R.H.L. = $\lim_{x \to 1^+} (3(x+1))$
	Put $x = 1 + h = h \& h \to 0$
6	wight \mathbb{Q} www.studiestoday.com All rights reserved. No part of this publication may be

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\therefore \text{R.H.L.} \lim_{h \to 0} (3(1+h+1) = 3(2) = 6$
	\Rightarrow R.H.L. = 6
	Since L.H.L = R.H.L.
	$\lim_{x \to 0} f(x) \text{ Exist and } \lim_{x \to 1} f(x) = 6 \text{ ans.}$
Q.9)	a_1, a_2, a_3 a_n are any real numbers $f(x) = (x - a_1)(x - a_2)(x - a_3)$ $(x - a_n)$.
	What is $\lim_{x \to a} f(x)$? Also compute $\lim_{x \to a} f(x)$.
Sol.9)	$\lim_{x \to a_1} f(x) = \lim_{x \to a_1} [(x - a_1)(x - a_2)(x - a_3) \dots (x - a_n)]$
	$= (a_1 - a_1)(a_1 - a_2)(a_1 - a_3) \dots \dots (a_1 - a_n)$
	$= 0(a_1 - a_2)(a_1 - a_3)a_1 - a_n$
	= 0 ans.
	$\lim_{x \to a} f(x) = \lim_{x \to a} [(x - a_1)(x - a_2) \dots (x - a_n)]$
	$=(a-a_1)(a-a_2)(a-a_n)$ ans.
	TYPE: 2 FACTORIZE
	Formula: a^2-b^2 , a^3-b^3 , a^4-b^4 , quadratic equation, cubic (hit & trial) L.C.M.
Q.10)	Formula: $a^2 - b^2$, $a^3 - b^3$, $a^4 - b^4$, quadratic equation, cubic (hit & trial) L.C.M. Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2-x} - \frac{1}{x^3-3x^2+2x} \right]$
Q.10) Sol.10)	
	Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ We have $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$
	Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$
	Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ We have $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x^2 + 3x + 2)} \right]$
	Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ We have $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x^2 + 3x + 2)} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)} \right]$
	Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ We have $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x^2 + 3x + 2)} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)} \right]$ $= \lim_{x \to 1} \left[\frac{(x-2)^2 - 1}{x(x-1)(x-2)} \right]$
	Evaluate: $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ We have $\lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x^2 + 3x + 2)} \right]$ $= \lim_{x \to 1} \left[\frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)} \right]$ $= \lim_{x \to 1} \left[\frac{(x-2)^2 - 1}{x(x-1)(x-2)} \right]$ $= \lim_{x \to 1} \left[\frac{x^2 - 4x + 4 - 1}{x(x-1)(x-2)} \right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.