	Class 11 Limits \& Derivatives Class 11 ${ }^{\text {th }}$
	TYPE: 2 FACTORIZE Formula: $a^{2}-b^{2}, a^{3}-b^{3}, a^{4}-b^{4}$, quadratic equation, cubic (hit $\&$ trial) L.C.M.
Q.1)	Evaluate: $\lim _{x \rightarrow 3}\left[\frac{x^{3}-7 x^{2}+15 x-9}{x^{4}-5 x^{3}+27 x-27}\right]$ $(x-3)$ is the factor of both polynomials.
Sol.1)	We have $\lim _{x \rightarrow 3}\left[\frac{x^{3}-7 x^{2}+15 x-9}{x^{4}-5 x^{3}+27 x-27}\right]$ ($x-3$) is the factor of both polynomials $\begin{aligned} & =\lim _{x \rightarrow 3}\left[\frac{(x-3)\left(x^{2}-4 x+3\right)}{(x-3)\left(x^{3}-2 x^{2}-6 x+9\right)}\right] \\ & =\lim _{x \rightarrow 3}\left[\frac{(x-1)(x-3)}{x^{3}-2 x^{2}-6 x+9}\right] \end{aligned}$ Again $(x-3)$ is factor of D $\begin{aligned} & =\lim _{x \rightarrow 3}\left[\frac{(x-1)(x-3)}{(x-3)\left(x^{2}+x-3\right)}\right] \\ & =\lim _{x \rightarrow 3}\left[\frac{(x-1)}{x^{2}+x-3}\right] \\ & =\frac{3-1}{9+3-3}=\frac{2}{9} \text { ans. } \end{aligned}$
Q.2)	Evaluate: $\lim _{x \rightarrow \sqrt{2}}\left[\frac{x^{4}-4}{x^{2}+3 \sqrt{2} x-8}\right]$
Sol.2)	We have $\lim _{x \rightarrow \sqrt{2}}\left[\frac{x^{4}-4}{x^{2}+3 \sqrt{2} x-8}\right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\lim _{x \rightarrow \sqrt{2}}\left[\frac{\left(x^{2}\right)^{2}-(2)^{2}}{x^{2}+4 \sqrt{2} x-\sqrt{2} x-8}\right] \\ & =\lim _{x \rightarrow \sqrt{2}}\left[\frac{\left(x^{2}+2\right)\left(x^{2}-2\right)}{x(x+4 \sqrt{2})-\sqrt{2}(x+4 \sqrt{2})}\right] \\ & =\lim _{x \rightarrow \sqrt{2}}\left[\frac{\left(x^{2}+2\right)(x+\sqrt{2})(x-\sqrt{2})}{(x+4 \sqrt{2})(x-\sqrt{2})}\right] \\ & =\frac{\left((\sqrt{2})^{2}+2\right)(\sqrt{2}+\sqrt{2})}{(\sqrt{2}+4 \sqrt{2})} \\ & =\frac{(4)(2 \sqrt{2})}{(5 \sqrt{2})} \\ & =\frac{8}{5} \text { ans. } \end{aligned}$
	TYPE: 3 RATIONALIZE When rationalize: $(\sqrt{ }-\sqrt{ }) ;(\sqrt{ }-$ function $) ;($ fnction $-\sqrt{ })$
Q.3)	Evaluate: $\lim _{x \rightarrow 4}\left[\frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}\right]$ Rationalize both $N \& D$ simultaniusly
Sol.3)	We have $\lim _{x \rightarrow 4}\left[\frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}\right]$ $\begin{aligned} & =\lim _{x \rightarrow 4}\left[\frac{(3-\sqrt{5+x})(1+\sqrt{5-x})(3+\sqrt{5+x})}{(1-\sqrt{5-x})(1+\sqrt{5-x})(3+\sqrt{5+x})}\right] \\ & =\lim _{x \rightarrow 4}\left[\frac{(9-5-x)(1+\sqrt{5-x})}{(1-\sqrt{5+x})(3+\sqrt{5+x})}\right] \\ & =\lim _{x \rightarrow 4}\left[\frac{(4-x)(1+\sqrt{5-x})}{(x-4)(3+\sqrt{5+x})}\right] \\ & =\lim _{x \rightarrow 4}\left[\frac{-(x-4)(1+\sqrt{5-x})}{(x-4)(3+\sqrt{5+x})}\right] \\ & =\frac{-(1+\sqrt{5-4})}{(3+\sqrt{5+x})} \\ & =\frac{-(1+1)}{3+3}=-\frac{2}{6} \\ & =-\frac{1}{3} \text { ans. } \end{aligned}$
Q.4)	Evaluate: $\lim _{x \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}\right]$
Sol.4)	We have, $\lim _{x \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}\right]$ Rationalize both $N \& D$ $=\lim _{x \rightarrow a}\left[\frac{(\sqrt{a+2 x}-\sqrt{3 x})(\sqrt{3 a+x}+2 \sqrt{x})(\sqrt{a+2 x}+\sqrt{3 x})}{(\sqrt{3 a+x}-2 \sqrt{x})(\sqrt{3 a+x}+2 \sqrt{x})(\sqrt{a+2 x}+\sqrt{3 x})}\right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\lim _{x \rightarrow a}\left[\frac{(a+2 x-3 x)(\sqrt{3 a+x}+2 \sqrt{x})}{(3 a+x-4 x)(\sqrt{a+2 x}+\sqrt{3 x})}\right] \\ & =\lim _{x \rightarrow a}\left[\frac{(a-x)(\sqrt{3 a+x}+2 \sqrt{x})}{(3 a+3 x)(\sqrt{a+2 x}+\sqrt{3 x})}\right] \\ & =\lim _{x \rightarrow a}\left[\frac{(a-x)(\sqrt{3 a+x}+2 \sqrt{x})}{3(a-x)(\sqrt{a+2 x}+\sqrt{3 x})}\right] \\ & =\frac{(\sqrt{3 a+a}+2 \sqrt{a})}{3(\sqrt{a+2 a}+\sqrt{3 a})} \\ & =\frac{2 \sqrt{a}+2 \sqrt{a}}{3(\sqrt{3 a}+\sqrt{3 a})} \\ & =\frac{4 \sqrt{a}}{3(2 \sqrt{3 a})} \\ & =\frac{4 \sqrt{a}}{6 \sqrt{3} \sqrt{a}}=\frac{2}{3 \sqrt{3}} \text { ans. } \end{aligned}$
Q.5)	Evaluate: $\lim _{x \rightarrow 1}\left[\frac{(2 x-3)-(\sqrt{x}-1)}{2 x^{2}+x-3}\right]$
Sol.5)	We have, $\lim _{x \rightarrow 1}\left[\frac{(2 x-3)-(\sqrt{x}-1)}{2 x^{2}+x-3}\right]$ Rationalize both $N \& D$ $\begin{aligned} & =\lim _{x \rightarrow 1}\left[\frac{(2 x-3)(\sqrt{x}-1)(\sqrt{x}+1)}{\left(2 x^{2}+3 x-2 x-3\right)(\sqrt{x}+1)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(2 x-3)(x-1)}{(2 x+3)(x-1)(\sqrt{x}+1)}\right] \\ & =\lim _{x \rightarrow 1}\left[\frac{(2 x-3)}{(2 x+3)(\sqrt{x}+1)}\right] \\ & =\frac{(2 x-3)}{(2 x+3)(1+1)} \\ & =\frac{-1}{(5)(2)} \\ & =\frac{-1}{10} \text { ans. } \end{aligned}$
	TYPE: $4 \lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=\boldsymbol{n a n - 1}$
Q.6)	Evaluate: $\lim _{x \rightarrow 2}\left(\frac{x^{10}-1024}{x^{5}-32}\right)$
Sol.6)	We have $\lim _{x \rightarrow 2}\left(\frac{x^{10}-1024}{x^{5}-32}\right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$=\lim _{x \rightarrow 2}\left[\frac{x^{10}-2^{10}}{x^{5}-2^{5}}\right]$ Divide $N \& D$ by $(x-2)$ $\begin{aligned} & =\lim _{x \rightarrow 2}\left[\frac{\frac{x^{10}-2^{10}}{x-2}}{\frac{x^{5}-2^{5}}{x-2}}\right] \\ & =\frac{\lim _{x \rightarrow 2}\left[\frac{x^{10}-2^{10}}{x-2}\right]}{\lim _{x \rightarrow 2}\left[\frac{x^{5}-2^{5}}{x-2}\right]} \\ & =\frac{10(2)^{10-1}}{5(2)^{5-1}} \\ & =2(2)^{5} \\ & =2 \times 32=64 \text { ans. } \end{aligned}$
Q.7)	Evaluate: $\lim _{x \rightarrow a}\left(\frac{(x+2)^{5 / 3}-(a+2)^{5 / 3}}{x-a}\right)$
Sol.7)	We have $\lim _{x \rightarrow a}\left(\frac{(x+2)^{5 / 3-(a+2)^{5 / 3}}}{x-a}\right)$ Substitution: put $x+2=y$ Limits change: when $x \rightarrow a$ then $y \rightarrow a+2$ $\begin{aligned} & \therefore \lim _{y \rightarrow a+2}\left[\frac{y^{5 / 3}-(a+2)^{5 / 3}}{y-2-a}\right] \\ & =\lim _{y \rightarrow a+2}\left[\frac{y^{5 / 3}-(a+2)^{5 / 3}}{y-(a+2)}\right] \\ & =\frac{5}{3}(a+2)^{5 / 3-1} \\ & =\frac{5}{3}(a+2)^{2 / 3} \text { ans. } \end{aligned}$ $\left\{\lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=n a^{n-1}\right\}$
Q.8)	Evaluate: $\lim _{x \rightarrow 0}\left(\frac{(1+x)^{6}-1}{(1+x)^{2}-1}\right)$
Sol.8)	We have $\lim _{x \rightarrow 0}\left(\frac{(1+x)^{6}-1}{(1+x)^{2}-1}\right)$ put $1+x=y$, when $x \rightarrow 0$ then $y \rightarrow 1$ $\therefore \lim _{y \rightarrow 1}\left[\frac{y^{6}-1}{y^{2}-1}\right]$ Divide $N \& D$ by $(y-1)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\lim _{y \rightarrow 1}\left[\frac{\frac{y^{6}-1}{y-1}}{\frac{y^{2}-1}{y-1}}\right] \\ & =\frac{\lim _{y \rightarrow 1}\left[\frac{y^{6}-1}{y-1}\right]}{\lim _{y \rightarrow 1}\left[\frac{y^{2}-1}{y-1}\right]} \\ & =\frac{6(1)^{5}}{5(1)^{1}} \\ & =\frac{6}{2}=3 \text { ans. } \end{aligned}$
Q.9)	Evaluate : $\lim _{x \rightarrow 1}\left\{\frac{\left(x+x^{2}+x^{3} \ldots \ldots . x^{n}\right)-n}{x-1}\right\}$
Sol.9)	$\text { We have } \begin{aligned} & \lim _{x \rightarrow 1}\left\{\frac{\left(x+x^{2}+x^{3} \ldots \ldots x^{n}\right)-n}{x-1}\right\} \\ & =\lim _{x \rightarrow 1}\left\{\frac{\left(x+x^{2}+x^{3} \ldots \ldots x^{n}\right)-(1+1+1 \ldots . \ldots \text { terms })}{x-1}\right\} \\ & =\lim _{x \rightarrow 1}\left\{\frac{(x-1)+\left(x^{2}-1\right)+\left(x^{3}-1\right) \ldots \ldots\left(x^{n}-1\right)}{x-1}\right\} \\ & =\lim _{x \rightarrow 1}\left[\frac{x-1}{x-1}\right]+\lim _{x \rightarrow 1}\left(\frac{x^{2}-1^{2}}{x-1}\right)+\lim _{x \rightarrow 1}\left(\frac{x^{3}-1^{3}}{x-1}\right)+\ldots \ldots . \lim _{x \rightarrow 1}\left(\frac{x^{n}-1^{n}}{x-1}\right) \\ & =1+2(1)^{1}+3(1)^{2}+\ldots \ldots \ldots n(1)^{n-1} \\ & =1+2+3+\ldots \ldots . n \\ & =\frac{n(n+1)}{2} \text { ans. } \end{aligned}$
Q.10)	If $\lim _{x \rightarrow-a}\left(\frac{x^{9}+a^{9}}{x+a}\right)=9$. Find the value of a.
Sol.10)	$\begin{aligned} & \text { We have } \lim _{x \rightarrow-a}\left(\frac{x^{9}-\left(-a^{9}\right)}{x-(-a)}\right)=9 \\ & \Rightarrow 9(-a)^{9-1}=9 \\ & \Rightarrow 9(-9)^{8}=9 \\ & \Rightarrow(-a)^{8}=1 \\ & \Rightarrow a^{8}=1 \\ & \Rightarrow a= \pm 1 \quad\left\{\lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=\boldsymbol{n} \boldsymbol{a}^{n-1}\right\} \\ & \Rightarrow a n s . \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

