| | Class 11 Limits & Derivatives | | | |--------|--|--|--| | | Class 11th | | | | | TYPE: 5 TRIGO LIMITS | | | | Q.1) | Evaluate: $\lim_{x\to 0} \left(\frac{\csc x - \cot x}{x} \right)$ | | | | Sol.1) | We have $\lim_{x\to 0} \left(\frac{\csc x - \cot x}{x} \right)$ | | | | | $= \lim_{x \to 0} \left(\frac{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}{x} \right)$ | | | | | $= \lim_{x \to 0} \left(\frac{1 - \cos x}{x \sin x} \right)$ | | | | | $= \lim_{x \to 0} \left(\frac{2\sin^2\left(\frac{x}{2}\right)}{x\sin x} \right)$ | | | | | $= \lim_{x \to 0} \left(\frac{\frac{2\sin^2(\frac{x}{2})}{\frac{x^2}{4}} \times \frac{x^2}{4}}{\frac{x\sin x}{x} \times x} \right)$ | | | | | $= \frac{2}{4} \frac{\lim_{x \to 0} \left(\frac{\sin^2\left(\frac{x}{2}\right)}{\frac{x^2}{4}}\right)}{\lim_{x \to 0} \left(\frac{\sin x}{x}\right)}$ | | | | | $= \frac{1}{2} \times \frac{(1)}{(1)}$ $= \frac{1}{2} \text{ ans.}$ $\left\{ \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \right\}$ | | | | | TYPE: 6 TRIGO LIMITS | | | | | When $\lim_{x \to a} f(x)$ | | | | Q.2) | Evaluate: $\lim_{x \to \frac{\pi}{2}} \left(\frac{1 + \cos(2x)}{(\pi - 2x)^2} \right)$ | | | | Sol.2) | We have : $\lim_{x \to \frac{\pi}{2}} \left(\frac{1 + \cos(2x)}{(\pi - 2x)^2} \right)$ | | | | | Put $x = \frac{\pi}{2} + h$ and $h \to 0$ | | | | | $\therefore \lim_{h \to 0} \left(\frac{1 + \cos\left(2\left(\frac{\pi}{2} + h\right)\right)}{\left(\pi - 2\left(\frac{\pi}{2} + h\right)\right)^2} \right)$ | | | | | $= \lim_{h \to 0} \left(\frac{1 + \cos(\pi + 2h)}{(\pi - \pi - 2h)^2} \right)$ | | | Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission. $$\begin{split} &=\lim_{h\to 0}\left(\frac{1-\cos(2h)}{4h^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2\sin^2h}{4h^2}\right)\\ &=\frac{1}{2}\lim_{h\to 0}\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{2}\lim_{h\to 0}\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{2}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{2}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{2}\ln\left(\frac{2-\sqrt{3}\cos x-\sin x}{(6x-\pi)^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2-\sqrt{3}\cos\left(\frac{\pi}{6}+h\right)-\sin\left(\frac{\pi}{6}+h\right)}{(6(\frac{\pi}{6}+h)-\sin\left(\frac{\pi}{6}+h\right)}\right)\\ &=\lim_{h\to 0}\left(\frac{2-\sqrt{3}\left(\cos\frac{\pi}{6}\cos h-\sin\frac{\pi}{6}\sin h\right)-\left(\sin\frac{\pi}{6}\sin h+\cos\frac{\pi}{6}\cos h\right)}{(\pi+6h-\pi)^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2-\sqrt{3}\left(\cos\frac{\pi}{6}\cos h-\sin\frac{\pi}{6}\sin h\right)-\left(\frac{1}{2}\cos h+\frac{\sqrt{3}}{2}\sin h\right)}{36h^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2-\sqrt{3}\left(\sqrt{\frac{3}{2}}\cos h-\frac{1}{2}\sin h\right)-\left(\frac{1}{2}\cos h+\frac{\sqrt{3}}{2}\sin h\right)}{36h^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2-\frac{3}{2}\cos h+\frac{\sqrt{3}}{2}\sin h-\frac{1}{2}\cos h-\frac{\sqrt{3}}{2}\sin h}{36h^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2-2\cos h}{36h^2}\right)\\ &=\lim_{h\to 0}\left(\frac{2\sin^2\left(\frac{h}{2}\right)}{36h^2}\right)\\ &=\frac{1}{18}\lim_{h\to 0}\left(\frac{2\sin^2\left(\frac{h}{2}\right)}{h^2+4}\right)\\ &=\frac{1}{36}\lim_{h\to 0}\left(\frac{\sin^2\left(\frac{h}{2}\right)}{h^2+4}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin\left(\frac{\sin^2h}{2}\right)}{h^2+4}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin\left(\frac{\sin^2h}{2}\right)}{h^2+4}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin^2\left(\frac{h}{2}\right)}{h^2+4}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{36}\ln\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{36}\ln \cos\left(\frac{\sin^2h}{h^2}\right)\\ &=\frac{1}{36}\ln$$ Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission. | Q.5) | Evaluate: $\lim_{x \to \pi} \left(\frac{\sin(3x) - 3\sin x}{(\pi - x)^3} \right)$ | | |--------|--|--| | Sol.5) | We have $\lim_{x \to \pi} \left(\frac{\sin(3x) - 3\sin x}{(\pi - x)^3} \right)$ | | | | $= \lim_{x \to \pi} \left(\frac{3 \sin x - 4 \sin^3 x - 3 \sin x}{(\pi - x)^3} \right)$ | | | | $= \lim_{x \to \pi} \left(\frac{-4\sin^3 x}{(\pi - x)^3} \right)$ | | | | Put $x = \pi + h$ and $h \to 0$ | | | | $= \lim_{h \to 0} \left(\frac{-4\sin^3(\pi+h) - 3\sin(\pi+h)}{(\pi-\pi+h)^3} \right)$ | | | | $=\lim_{h\to 0}\left(\frac{+4\sin^3 h}{-h^3}\right)$ | $\{\sin(\pi+\theta)=-\sin\theta\}$ | | | $= -4 \lim_{h \to 0} \left(\frac{\sin^3 h}{h^3} \right)$ | | | | $=-4(1)^3=-4$ ans. | $\left\{\lim_{x\to 0} \left(\frac{\sin x}{x}\right) = 1\right\}$ | | Q.6) | Evaluate: $\lim_{x \to \frac{\pi}{2}} \left(\frac{\cot x - \cos x}{(\pi - 2x)^3} \right)$ | 27. | | Sol.6) | We have $\lim_{x \to \frac{\pi}{2}} \left(\frac{\cot x - \cos x}{(\pi - 2x)^3} \right)$ | | | | Put $x = \frac{\pi}{2} + h$ and $h \to 0$ | | | | $= \lim_{h \to 0} \left(\frac{\cot\left(\frac{\pi}{2} + h\right) - \cos\left(\frac{\pi}{2} + h\right)}{\left(\pi - 2\left(\frac{\pi}{2} + h\right)\right)^3} \right)$ | | | | $= \lim_{h \to 0} \left(\frac{-\tan h + \sin h}{(\pi - \pi + 2h)^3} \right)$ | | | | $= \lim_{h \to 0} \left(\frac{-\tan h + \sin h}{-8h^3} \right)$ | | | | $= \lim_{h \to 0} \left(\frac{\tan h - \sin h}{8h^3} \right)$ | | | | $= \frac{1}{8} \lim_{h \to 0} \left(\frac{\frac{\sin h}{\cos h} - \sin h}{h^3} \right)$ | | | | $= \frac{1}{8} \lim_{h \to 0} \left(\frac{\sin h - \sin h \cdot \cos h}{h^3 \cdot \cos h} \right)$ | | | | $= \frac{1}{8} \lim_{h \to 0} \left(\frac{\sin h \left(1 - \cos h \right)}{h^3 \cdot \cos h} \right)$ | | | | $= \frac{1}{8} \lim_{h \to 0} \left(\frac{\sin h \cdot 2 \sin^2 \left(\frac{h}{2}\right)}{h^3 \cdot \cos h} \right)$ | | Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission. $$\begin{split} & = \frac{1}{8} \lim_{h \to 0} \left(\frac{\sin h}{h}, \frac{2 \sin^2 \left(\frac{h}{2} \right)}{h^2}, \frac{1}{\cos h} \right) \\ & = \frac{1}{8} \lim_{h \to 0} \left(\frac{\sin h}{h}, \frac{2 \sin^2 \left(\frac{h}{2} \right)}{h^2}, \frac{1}{\cos h} \right) \\ & = \frac{1}{8} \lim_{h \to 0} \left(\frac{\sin h}{h} \right) \times \frac{2}{4}, \lim_{h \to 0} \left(\frac{\sin^2 \left(\frac{h}{2} \right)}{h^2} \right) \times \lim_{h \to 0} \left(\frac{1}{\cos h} \right) \\ & = \frac{1}{8} \times 1 \times \frac{1}{2} \times 1^2 \times 1 \qquad \left\{ \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \right\} \\ & = \frac{1}{16} \text{ ans.} \end{split}$$ $$Q.7) \qquad \text{Evaluate: } \lim_{x \to \frac{1}{2}} \left(\frac{\sqrt{2} - \sqrt{1 + \sin x}}{\cos^2 x} \right) \\ \text{Sol.7)} \qquad \text{We have } \lim_{x \to \frac{1}{2}} \left(\frac{\sqrt{2} - \sqrt{1 + \sin x}}{\cos^2 x} \right) \\ & = \lim_{x \to \frac{1}{2}} \left[\frac{\sqrt{2} - \sqrt{1 + \sin x}}{\cos^2 x} \right] \\ & = \lim_{x \to \frac{1}{2}} \left[\frac{\sqrt{2} - \sqrt{1 + \sin x}}{\cos^2 x} \right] \\ & = \lim_{x \to \frac{1}{2}} \left[\frac{(\sqrt{2} - \sqrt{1 + \sin x})(\sqrt{2} + \sqrt{1 + \sin x})}{\cos^2 x} \right] \\ & = \lim_{x \to \frac{1}{2}} \left[\frac{1 - \sin x}{\cos^2 x} \left(\sqrt{2} + \sqrt{1 + \sin x} \right) \right] \\ & = \lim_{h \to 0} \left(\frac{1 - \sin \left(\frac{\pi}{2} + h \right)}{\cos^2 \left(\frac{\pi}{2} + h \right)} \right) \times \lim_{x \to \frac{\pi}{2}} \left[\frac{1}{\sqrt{2} + \sqrt{1 + \sin x}} \right] \\ & = \lim_{h \to 0} \left(\frac{1 - \cos h}{\sin^2 h} \right) \times \frac{1}{2\sqrt{2}} \\ & = \lim_{h \to 0} \left(\frac{2 \sin^2 \left(\frac{h}{2} \right)}{\sin^2 h} \right) \times \frac{1}{2\sqrt{2}} \\ & = \lim_{h \to 0} \left(\frac{2 \sin^2 \left(\frac{h}{2} \right)}{\sin^2 h} \times h^2} \right) \times \frac{1}{2\sqrt{2}} \end{split}$$ Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission. | | $= \frac{\frac{2}{4h \to 0} \left(\frac{\sin^2\left(\frac{h}{2}\right)}{\frac{h^2}{4}}\right)}{\lim_{h \to 0} \left(\frac{\sin^2\left(\frac{h}{2}\right)}{h^2}\right)} \times \frac{1}{2\sqrt{2}}$ $\left\{\lim_{x \to 0} \left(\frac{\sin x}{x}\right) = 1\right\}$ | |--------|--| | | $=\frac{1}{2} \times \frac{1}{1} \times \frac{1}{2\sqrt{2}} = \frac{1}{4\sqrt{2}}$ ans. | | Q.8) | Evaluate: $\lim_{x\to 0} \left(\frac{1-\cos(2x)}{\cos(2x)-\cos(8x)}\right)$ | | Sol.8) | We have $\lim_{x\to 0} \left(\frac{1-\cos(2x)}{\cos(2x)-\cos(8x)} \right)$ | | | $= \lim_{x \to 0} \left[\frac{2\sin^2 x}{-2\sin(5x).\sin(-3x)} \right]$ | | | $= \lim_{x \to 0} \left[\frac{\frac{\sin^2 x}{x^2} \times x^2}{15 \times \frac{\sin(5x)}{5x} \cdot \frac{\sin(3x)}{3x}} \right]$ | | | $= \frac{\lim_{x \to 0} \frac{\sin^2 x}{x^2}}{15 \times \lim_{x \to 0} \frac{\sin(5x)}{5x} \times \lim_{x \to 0} \frac{\sin(3x)}{3x}}$ $= \frac{1^2}{15(1)(1)} = \frac{1}{15} \text{ ans.} \qquad \left\{ \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \right\}$ | | | $= \frac{1^2}{15(1)(1)} = \frac{1}{15} \text{ ans.} \qquad \left\{ \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \right\}$ | | Q.9) | Evaluate: $\lim_{x \to a} \left(\frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \right)$ | | Sol.9) | We have $\lim_{x \to a} \left(\frac{\sin x - \sin a}{\sqrt{x} - \sqrt{a}} \right)$ | | | Rationalize | | | $= \lim_{x \to a} \left(\frac{(\sin x - \sin a)(\sqrt{x} - \sqrt{a})}{x - a} \right)$ | | | Put $x = a + h$ and $h \to 0$ | | | $= \lim_{h \to 0} \left(\frac{(\sin(a+h) - \sin a)(\sqrt{a+h} - \sqrt{a})}{a+h-a} \right)$ | | | $= \lim_{h \to 0} \left(\frac{2 \cos\left(\frac{2a+h}{2}\right) \cdot \sin\left(\frac{h}{2}\right) \cdot (\sqrt{a+h} - \sqrt{a}\right)}{h} \right)$ | | | $= \lim_{h \to 0} \left(\frac{2 \cos\left(\frac{2a+h}{2}\right) \cdot \sin\left(\frac{h}{2}\right) \cdot (\sqrt{a+h} - \sqrt{a})}{\frac{h}{2} \times 2} \right)$ | | | $= \lim_{h \to 0} \left(\frac{\sin(\frac{h}{2})}{\frac{h}{2}} \right) \times \lim_{h \to 0} \left(\cos\left(\frac{2a+h}{2}\right) \cdot \left(\sqrt{a+h} - \sqrt{a}\right) \right)$ | | | $= 1 \times \cos(a) \left(\sqrt{a} + \sqrt{a} \right) \qquad \left\{ \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1 \right\}$ | | | $=2\sqrt{a}\cos a$ ans. | | | TYPE: 7 | | | $\lim_{x \to 0} \left(\frac{e^x - 1}{x}\right) \text{ and } \lim_{x \to 0} \frac{\log(1 + x)}{x}$ | Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission. | Q.10) | Evaluate $\lim_{x\to 0} \left(\frac{a^x - b^x}{x}\right)$ | | |---------|---|--| | Sol.10) | We have $\lim_{x\to 0} \left(\frac{a^x - b^x}{x}\right)$ | | | | $=\lim_{x\to 0}\left(\frac{a^x-b^x-1+1}{x}\right)$ | | | | $=\lim_{x\to 0}\left(\frac{a^x-1}{x}-\frac{b^x-1}{x}\right)$ | | | | $= \lim_{x \to 0} \left(\frac{a^{x} - 1}{x} \right) - \lim_{x \to 0} \left(\frac{b^{x} - 1}{x} \right)$ | | | | $= \log a - \log b$ | | | | $=\log\left(\frac{a}{b}\right)$ ans. | $\left\{\lim_{x\to 0} \left(\frac{a^x - 1}{x}\right) = \log a\right\}$ | | | | | Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.