Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Limits \& Derivatives Class $11^{\text {th }}$
	TYPE: 5 TRIGO LIMITS
Q.1)	Evaluate: $\lim _{x \rightarrow 0}\left(\frac{\operatorname{cosec} x-\cot x}{x}\right)$
Sol.1)	We have $\lim _{x \rightarrow 0}\left(\frac{\operatorname{cosec} x-\cot x}{x}\right)$ $\begin{aligned} & =\lim _{x \rightarrow 0}\left(\frac{\frac{1}{\sin n}-\frac{\cos x}{\sin x}}{x}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x \sin x}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{x \sin x}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{\frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{\frac{x^{2}}{4}} \times \frac{x^{2}}{4}}{\frac{x \sin x}{x} \times x}\right) \\ & =\frac{2}{4} \frac{\lim _{x \rightarrow 0}\left(\frac{\sin ^{2}\left(\frac{x}{2}\right)}{\frac{x^{2}}{4}}\right)}{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)} \\ & =\frac{1}{2} \times \frac{(1)}{(1)} \\ & =\frac{1}{2} \text { ans. } \end{aligned}$
	TYPE: 6 TRIGO LIMITS When $\lim _{x \rightarrow a} f(x)$
Q.2)	Evaluate: $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1+\cos (2 x)}{(\pi-2 x)^{2}}\right)$
Sol.2)	We have : $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1+\cos (2 x)}{(\pi-2 x)^{2}}\right)$ Put $x=\frac{\pi}{2}+h$ and $h \rightarrow 0$ $\begin{aligned} & \therefore \lim _{h \rightarrow 0}\left(\frac{1+\cos \left(2\left(\frac{\pi}{2}+h\right)\right)}{\left(\pi-2\left(\frac{\pi}{2}+h\right)\right)^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{1+\cos (\pi+2 h)}{(\pi-\pi-2 h)^{2}}\right) \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\lim _{h \rightarrow 0}\left(\frac{1-\cos (2 h)}{4 h^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2 \sin ^{2} h}{4 h^{2}}\right) \\ & =\frac{1}{2} \lim _{h \rightarrow 0}\left(\frac{\sin ^{2} h}{h^{2}}\right) \\ & =\frac{1}{2}(1)^{2} \quad\left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\} \\ & =\frac{1}{2} \text { ans. } \end{aligned}$
Q.3)	Evaluate: $\lim _{x \rightarrow \frac{\pi}{6}}\left(\frac{2-\sqrt{3} \cos x-\sin x}{(6 x-\pi)^{2}}\right)$
Sol.3)	$\begin{aligned} & \text { We have } \lim _{x \rightarrow \frac{\pi}{6}}\left(\frac{2-\sqrt{3} \cos x-\sin x}{(6 x-\pi)^{2}}\right) \\ & \text { Put } x=\frac{\pi}{6}+h \text { and } h \rightarrow 0 \\ & =\lim _{h \rightarrow 0}\left(\frac{2-\sqrt{3} \cos \left(\frac{\pi}{6}+h\right)-\sin \left(\frac{\pi}{6}+h\right)}{\left(6\left(\frac{\pi}{6}+h\right)-\pi\right)^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2-\sqrt{3}\left(\cos \frac{\pi}{6} \cos h-\sin \frac{\pi}{6} \sin h\right)-\left(\sin \frac{\pi}{6} \sin h+\cos \frac{\pi}{6} \cos h\right)}{(\pi+6 h-\pi)^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2-\sqrt{3}\left(\frac{\sqrt{3}}{2} \cos h-\frac{1}{2} \sin h\right)-\left(\frac{1}{2} \cos h+\frac{\sqrt{3}}{2} \sin h\right)}{36 h^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2-\frac{3}{2} \cos h+\frac{\sqrt{3}}{2} \sin h-\frac{1}{2} \cos h-\frac{\sqrt{3}}{2} \sin h}{36 h^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2-2 \cos h}{36 h^{2}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2(1-\cos h)}{36 h^{2}}\right) \\ & =\frac{1}{18} \lim _{h \rightarrow 0}\left(\frac{2 \sin ^{2}\left(\frac{h}{2}\right)}{\frac{h^{2}}{4} \times 4}\right) \\ & =\frac{1}{36} \lim _{h \rightarrow 0}\left(\frac{\sin ^{2}\left(\frac{h}{2}\right)}{\frac{h^{2}}{4}}\right) \\ & =\frac{1}{36} \times(1)^{2}=\frac{1}{36} \text { ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Q.5)	Evaluate: $\lim _{x \rightarrow \pi}\left(\frac{\sin (3 x)-3 \sin x}{(\pi-x)^{3}}\right)$
Sol.5)	We have $\lim _{x \rightarrow \pi}\left(\frac{\sin (3 x)-3 \sin x}{(\pi-x)^{3}}\right)$ $\begin{aligned} & =\lim _{x \rightarrow \pi}\left(\frac{3 \sin x-4 \sin ^{3} x-3 \sin x}{(\pi-x)^{3}}\right) \\ & =\lim _{x \rightarrow \pi}\left(\frac{-4 \sin ^{3} x}{(\pi-x)^{3}}\right) \end{aligned}$ Put $x=\pi+h$ and $h \rightarrow 0$ $\begin{aligned} & =\lim _{h \rightarrow 0}\left(\frac{-4 \sin ^{3}(\pi+h)-3 \sin (\pi+h)}{(\pi-\pi+h)^{3}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{+4 \sin ^{3} h}{-h^{3}}\right) \\ & =-4 \lim _{h \rightarrow 0}\left(\frac{\sin ^{3} h}{h^{3}}\right) \\ & =-4(1)^{3}=-4 \text { ans. } \end{aligned}$ $\{\sin (\pi+\theta)=-\sin \theta\}$ $\left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\}$
Q.6)	Evaluate: $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cot x-\cos x}{(\pi-2 x)^{3}}\right)$
Sol.6)	We have $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cot x-\cos x}{(\pi-2 x)^{3}}\right)$ Put $x=\frac{\pi}{2}+h$ and $h \rightarrow 0$ $\begin{aligned} & =\lim _{h \rightarrow 0}\left(\frac{\cot \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}+h\right)}{\left(\pi-2\left(\frac{\pi}{2}+h\right)\right)^{3}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{-\tan h+\sin h}{(\pi-\pi+2 h)^{3}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{-\tan h+\sin h}{-8 h^{3}}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{\tan h-\sin h}{8 h^{3}}\right) \\ & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\frac{\sin h}{\cos h}-\sin h}{h^{3}}\right) \\ & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\sin h-\sin h \cdot \cos h}{h^{3} \cdot \cos h}\right) \\ & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\sin h(1-\cos h)}{h^{3} \cdot \cos h}\right) \\ & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\sin h \cdot 2 \sin 2\left(\frac{h}{2}\right)}{h^{3} \cdot \cos h}\right) \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\sin h}{h} \cdot \frac{2 \sin ^{2}\left(\frac{h}{2}\right)}{h^{2}} \cdot \frac{1}{\cos h}\right) \\ & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\sin h}{h} \cdot \frac{2 \sin ^{2}\left(\frac{h}{2}\right)}{\frac{h^{2}}{4} \times 4} \cdot \frac{1}{\cos h}\right) \\ & =\frac{1}{8} \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right) \times \frac{2}{4} \cdot \lim _{h \rightarrow 0}\left(\frac{\sin ^{2}\left(\frac{h}{2}\right)}{\frac{h^{2}}{4}}\right) \times \lim _{h \rightarrow 0}\left(\frac{1}{\cos h}\right) \\ & =\frac{1}{8} \times 1 \times \frac{1}{2} \times 1^{2} \times 1 \quad \quad\left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\} \\ & =\frac{1}{16} \text { ans. } \end{aligned}$
Q.7)	Evaluate: $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sqrt{2}-\sqrt{1+\sin x}}{\cos ^{2} x}\right)$
Sol.7)	We have $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sqrt{2}-\sqrt{1+\sin x}}{\cos ^{2} x}\right)$ Rationalize $\begin{aligned} & =\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{(\sqrt{2}-\sqrt{1+\sin x})(\sqrt{2}+\sqrt{1+\sin x})}{\cos ^{2} x(\sqrt{2}+\sqrt{1+\sin x})}\right] \\ & =\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{2-1-\sin x}{\cos ^{2} x(\sqrt{2}+\sqrt{1+\sin x})}\right] \\ & =\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{1-\sin x}{\cos ^{2} x(\sqrt{2}+\sqrt{1+\sin x})}\right] \end{aligned}$ Put $x=\frac{\pi}{2}+h$ and $h \rightarrow 0$ $\begin{aligned} & =\lim _{h \rightarrow 0}\left[\frac{1-\sin \left(\frac{\pi}{2}+h\right)}{\cos ^{2}\left(\frac{\pi}{2}+h\right)}\right] \times \lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{1}{\sqrt{2}+\sqrt{1+\sin x}}\right] \\ & =\lim _{h \rightarrow 0}\left(\frac{1-\cos h}{\sin ^{2} h}\right) \times \frac{1}{(\sqrt{2}+\sqrt{2})} \\ & =\lim _{h \rightarrow 0}\left(\frac{2 \sin ^{2}\left(\frac{h}{2}\right)}{\sin ^{2} h}\right) \times \frac{1}{2 \sqrt{2}} \\ & =\lim _{h \rightarrow 0}\left(\frac{\frac{2 \sin ^{2}\left(\frac{h}{2}\right)}{\frac{h^{2}}{4}} \times \frac{h^{2}}{4}}{\frac{\sin ^{2} h}{h^{2}} \times h^{2}}\right) \times \frac{1}{2 \sqrt{2}} \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

	$\begin{aligned} & =\frac{\frac{2}{4} \lim _{h \rightarrow 0}\left(\frac{\sin ^{2}\left(\frac{h}{2}\right)}{\frac{h^{2}}{4}}\right)}{\lim _{h \rightarrow 0}\left(\frac{\sin ^{2} h}{h^{2}}\right)} \times \frac{1}{2 \sqrt{2}} \\ & =\frac{1}{2} \times \frac{1}{1} \times \frac{1}{2 \sqrt{2}}=\frac{1}{4 \sqrt{2}} \text { ans. } \end{aligned} \quad\left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\}$
Q.8)	Evaluate: $\lim _{x \rightarrow 0}\left(\frac{1-\cos (2 x)}{\cos (2 x)-\cos (8 x)}\right)$
Sol.8)	We have $\lim _{x \rightarrow 0}\left(\frac{1-\cos (2 x)}{\cos (2 x)-\cos (8 x)}\right)$ $\begin{aligned} & =\lim _{x \rightarrow 0}\left[\frac{2 \sin ^{2} x}{-2 \sin (5 x) \cdot \sin (-3 x)}\right] \\ & =\lim _{x \rightarrow 0}\left[\frac{\frac{\sin ^{2} x}{x^{2}} \times x^{2}}{\left.15 \times \frac{\sin (5 x)}{5 x} \cdot \frac{\sin (3 x)}{3 x}\right]}\right. \\ & =\frac{\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}}{15 \times \lim _{x \rightarrow 0}^{\sin (5 x)}} 5 \times \lim _{5 x}^{\sin (3 x)} \\ & 3 x \rightarrow 0 \\ & \end{aligned} \frac{1^{2}}{15(1)(1)}=\frac{1}{15} \text { ans. } \quad\left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\},$
Q.9)	Evaluate: $\lim _{x \rightarrow a}\left(\frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}\right)$
Sol.9)	We have $\lim _{x \rightarrow a}\left(\frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}\right)$ Rationalize $=\lim _{x \rightarrow a}\left(\frac{(\sin x-\sin a)(\sqrt{x}-\sqrt{a})}{x-a}\right)$ Put $x=a+h$ and $h \rightarrow 0$ $\begin{aligned} & =\lim _{h \rightarrow 0}\left(\frac{(\sin (a+h)-\sin a)(\sqrt{a+h}-\sqrt{a})}{a+h-a}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2 \cos \left(\frac{2 a+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right) \cdot(\sqrt{a+h}-\sqrt{a})}{h}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{2 \cos \left(\frac{2 a+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right) \cdot(\sqrt{a+h}-\sqrt{a})}{\frac{h}{2} \times 2}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right) \times \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 a+h}{2}\right) \cdot(\sqrt{a+h}-\sqrt{a})\right) \\ & =1 \times \cos (a)(\sqrt{a}+\sqrt{a}) \quad\left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\} \\ & =2 \sqrt{a} \cos a \text { ans. } \end{aligned}$
	TYPE: 7 $\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right) \text { and } \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Q.10)	Evaluate $\lim _{x \rightarrow 0}\left(\frac{a^{x}-b^{x}}{x}\right)$	
Sol.10)	We have $\lim _{x \rightarrow 0}\left(\frac{a^{x}-b^{x}}{x}\right)$ $=\lim _{x \rightarrow 0}\left(\frac{a^{x}-b^{x}-1+1}{x}\right)$ $=\lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}-\frac{b^{x}-1}{x}\right)$ $=\lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}\right)-\lim _{x \rightarrow 0}\left(\frac{b^{x}-1}{x}\right)$ $=\log a-\log b$ $=\log \left(\frac{a}{b}\right)$ ans.	
		$\left\{\begin{array}{l}\left.\lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}\right)=\log a\right\}\end{array}\right.$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

