Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Limits \& Derivatives Class $11^{\text {th }}$
	TYPE: 7 $\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right) \text { and } \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}$
Q.1)	Evaluate $\lim _{x \rightarrow 0}\left(\frac{9^{x}-6^{x}-6^{x}+4}{x}\right)$
Sol.1)	$\text { We have } \begin{array}{rlrl} & \lim _{x \rightarrow 0}\left(\frac{9^{x}-6^{x}-6^{x}+4}{x}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{9^{x}-6^{x}-6^{x}+4}{x^{2}}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{3^{x}\left(3^{x}-2^{x}\right)-2^{x}\left(3^{x}-2^{x}\right)}{x^{2}}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{\left(3^{x}-2^{x}\right) \cdot\left(3^{x}-2^{x}\right)}{x^{2}}\right) \\ & =\lim _{x \rightarrow 0}\left(\frac{\left(3^{x}-2^{x}\right)^{2}}{x^{2}}\right) \\ & =\lim _{x \rightarrow 0}\left[\left(\frac{3^{x}-2^{x}}{x}\right)^{2}\right] & \\ & =\lim _{x \rightarrow 0}\left[\left[\frac{\left(3^{x}-1\right)-\left(2^{x}-1\right)}{x}\right]^{2}\right] & \\ & =\left\{\lim _{x \rightarrow 0}\left[\frac{3^{x}-1}{x}\right]-\lim _{x \rightarrow 0}\left[\frac{2^{x}-1}{x}\right]\right\}^{2} & \left\{\lim _{x \rightarrow 0}\left(\frac{a^{x}-1}{x}\right)=\log a\right\} \\ & =(\log 3-\log 2)^{2} & \{\log A+\log B=\log (A B)\} \end{array}$
	Trigo formula used:
Q.2)	Differentiate using first principle method $f(x)=\cos (3 x)$
Sol.2)	$\begin{aligned} \frac{d y}{d x}= & \lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{\cos (3 x+3 h)-\cos (3 x)}{h}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{-2 \sin \left(\frac{6 x+3 h}{2}\right) \cdot \sin \left(\frac{3 h}{2}\right)}{h}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{-2 \sin \left(\frac{6 x+3 h}{2}\right) \cdot \sin \left(\frac{3 h}{2}\right)}{\frac{3 h}{2}} \times \frac{3}{2}\right) \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \left(\frac{3 h}{2}\right) \cdot \sin \left(\frac{3 h}{2}\right)}{\frac{3 h}{2}}\right) \times\left[-3 \lim _{h \rightarrow 0}\left(\frac{6 x+3 h}{2}\right)\right] \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{array}{rlr} \hline=1 \times(-3 \sin (3 x)) & \left\{\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=1\right\} \\ \frac{d y}{d x}=f^{\prime}(x)=-3 \sin (3 x) \text { ans. } & \end{array}$
Q.3)	Differentiate using first formula $f(x)=\tan (2 x)$
Sol.3)	$\begin{aligned} & f^{\prime}(x)=\frac{d y}{d x}=\lim _{h \rightarrow 0}\left(\frac{\tan (2 x+2 h)-\tan (2 x)}{h}\right) \\ &=\lim _{h \rightarrow 0}\left(\frac{\left(\frac{\sin (2 x+2 h)}{\cos (2 x+2 h)}\right.}{h} \frac{\sin (2 x)}{\cos (2 x)}\right) \\ &=\lim _{h \rightarrow 0}\left(\frac{\sin (2 x+2 h) \cdot \cos (2 x)-\cos (2 x+2 h) \cdot \sin (2 x)}{h \cdot \cos (2 x+2 h) \cos (2 x)}\right) \\ &=\lim _{h \rightarrow 0}\left(\frac{\sin (2 x+2 h-2 x)}{h \cdot \cos (2 x+2 h) \cos (2 x)}\right) \quad \text { \{sin }(A-B) \text { formula \} } \\ &=\lim _{h \rightarrow 0}\left(\frac{\sin (2 h)}{2 h \cdot \cos (2 x+2 h) \cos (2 x)} \times 2\right) \\ &=\lim _{h \rightarrow 0}\left(\frac{\sin (2 h)}{2 h}\right) \times \lim _{h \rightarrow 0}\left(\frac{2}{\cos (2 x+2 h) \cdot \cos (2 x)}\right) \\ &=1 \times \frac{2}{\cos (2 x) \cdot \cos (2 x)} \\ & \therefore \frac{d y}{d x}=2 \sec ^{2}(2 x) \text { ans. } \end{aligned}$
Q.4)	$f(x)=\sqrt{\tan x}$, find $f^{\prime}(x)$ first principle method.
Sol.4)	$\begin{aligned} & f(x)=\sqrt{\tan x} \\ & f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{\sqrt{\tan (x+h)}-\sqrt{\tan x}}{h}\right] \end{aligned}$ Rationalize $\begin{aligned} & =\lim _{h \rightarrow 0}\left[\frac{\tan (x+h)-\tan x}{h \sqrt{\tan (x+h)}+\sqrt{\tan x}}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\tan (x+h-x)-[1+\tan (x+h) \cdot \tan x]}{h \sqrt{\tan (x+h)}+\sqrt{\tan x}}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\tan h \cdot[1+\tan (x+h) \cdot \tan x]}{h \sqrt{\tan (x+h)}+\sqrt{\tan x}]}\right. \\ & =\lim _{h \rightarrow 0}\left[\frac{\tan h}{h}\right] \times \lim _{h \rightarrow 0}\left[\frac{1+\tan (x+h) \cdot \tan x}{\sqrt{\tan (x+h)}+\sqrt{\tan x}]}\right. \\ & =1 \times \frac{(1+\tan (x+h) \cdot \tan x)}{\sqrt{\tan x}+\sqrt{\tan x}} \\ & =\frac{1+\tan ^{2} x}{2 \sqrt{\tan x}} \\ \therefore f^{\prime}(x) & =\frac{1}{2 \sqrt{\tan x}} \cdot \sec ^{2} x \text { ans. } \end{aligned}$
Q.5)	$f(x)=\sec ^{2} x$ Using first principle method.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Sol.5)	
Q.6)	$f(x)=\sin \left(x^{2}\right)$ Using first principle method.
Sol.6)	$\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0}\left[\frac{\sin (x+h)^{2}-\sin x^{2}}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin \left(x^{2}+h^{2}+2 h x\right)-\sin \left(x^{2}\right)}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{2 \cos \left(\frac{2 x^{2}+h^{2}+2 h x}{2}\right) \cdot \sin \left(\frac{h^{2}+2 h x}{2}\right)}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{2 \cos \left(\frac{2 x^{2}+h^{2}+2 h x}{2}\right) \cdot \sin \left(\frac{h^{2}+2 h x}{2}\right)}{h \cdot\left(\frac{h^{2}+2 h x}{2}\right)} \times\left(\frac{h^{2}+2 h x}{2}\right)\right] \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \left(\frac{h^{2}+2 h x}{2}\right)}{\frac{h^{2}+2 h x}{2}}\right) \times \lim _{h \rightarrow 0} 2 \cos \left(\frac{2 x^{2}+h^{2}+2 h x}{2}\right) \times \lim _{h \rightarrow 0}\left(\frac{\left(h^{2}+2 h x\right.}{2}\right) \\ & =1 \times\left(2 \cos \left(x^{2}\right)\right) \times \lim _{h \rightarrow 0}\left[\frac{h(h+2 x)}{2 h}\right] \\ & =2 \cos \left(x^{2}\right) \times\left(\frac{2 x}{2}\right) \\ & \therefore \frac{d y}{d x}=2 x \cdot \cos \left(x^{2}\right) \text { ans. } \end{aligned}$
Q.7)	$f(x)=\tan \sqrt{x}$ Using first principle method.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Sol.7)	$\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0} \tan (\sqrt{x+h})-\tan \sqrt{x} \\ & =\lim _{h \rightarrow 0}\left[\frac{\frac{\sin (\sqrt{x+h})}{\cos (\sqrt{x+h})}-\frac{\sin \sqrt{x}}{\cos \sqrt{x}}}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin (\sqrt{x+h}) \cdot \cos \sqrt{x} \cdot \cos (\sqrt{x+h}) \cdot \sin \sqrt{x}}{h \cdot \cos (\sqrt{x+h}) \cdot \cos \sqrt{x}}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin (\sqrt{x+h}-\sqrt{x})}{h \cdot \cos (\sqrt{x+h}) \cdot \cos \sqrt{x}}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin (\sqrt{x+h}-\sqrt{x}) \times(\sqrt{x+h}-\sqrt{x})}{h(\sqrt{x+h}-\sqrt{x}) \cdot \cos (\sqrt{x+h}) \cdot \cos \sqrt{x}}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin (\sqrt{x+h}+\sqrt{x})}{(\sqrt{x+h}+\sqrt{x})}\right] \times \lim _{h \rightarrow 0}\left[\frac{1}{\cos (\sqrt{x+h}) \cdot \cos \sqrt{x}}\right] \times \lim _{h \rightarrow 0}\left[\frac{(\sqrt{x+h}-\sqrt{x})}{h}\right] \\ & =1 \times \frac{1}{\cos \sqrt{x} \cdot \cos \sqrt{x}} \times \lim _{h \rightarrow 0}\left[\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\right] \\ & =\sec ^{2} \sqrt{x} \times \frac{1}{(\sqrt{x}+\sqrt{x})} \\ \therefore \frac{d y}{d x} & =\frac{1}{2 \sqrt{x}} \cdot \sec ^{2} \sqrt{x} \text { ans. } \end{aligned}$
Q.8)	$f(x)=x \cos x$ Using first principle method.
Sol.8)	$\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0}\left[\frac{(x+h) \cdot \cos (x+h)-x \cos x}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{x \cos (x+h)+h \cos (x+h)-x \cos x}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin (\sqrt{x+h}) \cdot \cos \sqrt{x} \cdot \cos (\sqrt{x+h}) \cdot \sin \sqrt{x}}{h \cdot \cos (\sqrt{x+h}) \cdot \cos \sqrt{x}}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{x\{\cos (x+h)\}+h \cos (x+h)-x \cos x}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{x\left\{-2 \sin \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)\right\}+h \cdot \cos (x+h)}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{-2 x \cdot \sin \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)}{2 \times \frac{h}{2}}+\frac{h \cdot \cos (x+h)}{h}\right] \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right) \times\left[x \lim \left(-\sin \left(\frac{2 x+h}{2}\right)\right)\right]+\lim _{h \rightarrow 0}(\cos (x+h)) \\ & =(1)(-x \sin x)+\cos x \\ \therefore f^{\prime}(x) & =-x \sin x+\cos x \text { ans. } \end{aligned}$
Q.9)	$f(x)=\frac{\sin x}{x}$ Using first principle method.
Sol.9)	$f^{\prime}(x)=\lim _{h \rightarrow 0}\left[\frac{\frac{\sin (x+h)}{x+h}-\frac{\sin x}{x}}{h}\right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} = & \lim _{h \rightarrow 0}\left[\frac{x \sin (x+h)-(x+h) \sin x}{h \cdot(x+h) x}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{x \sin (x+h)-x \sin x-h \sin x}{h(x+h) x}\right] \\ = & \lim _{h \rightarrow 0}\left[\frac{x\{\sin (x+h)-\sin x\}-h \sin x}{h(x+h) x}\right] \\ = & \lim _{h \rightarrow 0}\left[\frac{x\{\sin (x+h)-\sin x\}-h \sin x}{h(x+h) x}\right] \\ = & \lim _{h \rightarrow 0}\left[\frac{x\{\sin (x+h)-\sin x\}}{h(x+h) x}-\frac{h \sin x}{h(x+h) x}\right] \\ = & \lim _{h \rightarrow 0}\left[\frac{x \cdot 2 \cos \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)}{2 \times \frac{2}{2}(x+h) x}-\frac{\sin x}{(x+h) x}\right] \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \left(\frac{h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right) \times \lim _{h \rightarrow 0}\left(\frac{x \cdot \cos \left(\frac{2 x+h}{2}\right)}{(x+h) x}\right)-\lim _{h \rightarrow 0}\left(\frac{\sin x}{(x+h) x}\right) \\ & =1 \times\left(\frac{x \cos x}{x^{2}}\right)-\frac{\sin x}{x^{2}} \\ \therefore \frac{d y}{d x}= & \frac{x \cos x-\sin x}{x^{2}} \text { ans. } \end{aligned}$
Q.10)	$f(x)=\sin x-\cos x$ Using first principle method.
Sol.10)	$\begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0}\left[\frac{\{\sin (x+h)-\cos (x+h)\}-\{\sin x-\cos x\}}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\{\sin (x+h)-\sin x\}-\{\cos (x+h)-\cos x\}}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)+2 \sin \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{h}{2}\right)}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{2 \sin \left(\frac{h}{2}\right)\left\{\cos \left(\frac{2 x+h}{2}\right)+\sin \left(\frac{2 x+h}{2}\right)\right\}}{2 \times \frac{h}{2}}\right] \\ & =\lim _{h \rightarrow 0}\left(\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right) \times \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right)+\sin \left(\frac{2 x+h}{2}\right)\right) \\ & =1 \times(\cos x+\sin x) \\ \therefore f^{\prime}(x) & =\cos x+\sin x \text { ans. } \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

