Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Limits \& Derivatives Class 11 ${ }^{\text {th }}$
Q.1)	$f(x)=\frac{\sin x-x \cos x}{x \sin x+\cos x}$
Sol.1)	We have $\frac{\sin x-x \cos x}{x \sin x+\cos x}$ Differentiate w.r.t x (quotient rule) $\begin{aligned} & f^{\prime}(x)=\frac{(x \sin x+\cos x) \cdot \frac{d}{d x}(\sin x-x \cos x)-(\sin x-x \cos x) \cdot \frac{d}{d x}(x \sin x+\cos x)}{(x \sin x+\cos x)^{2}} \\ &= \\ & \frac{(x \sin x+\cos x) \cdot\left[\frac{d}{d x}(\sin x)-\left(x \cdot \frac{d}{d x}(\cos x)\right)+\cos x \frac{d}{d x}(x)\right]-(\sin x-x \cos x)\left[x \cdot \frac{d}{d x}(\sin x)+\cdot \frac{d}{d x}(x)+\frac{d}{d x} \cos x\right]}{(x \sin x+\cos x)^{2}} \\ &=\frac{(x \sin x+\cos x) \cdot[\cos x-(-x \sin x+\cos x)]-(\sin x-x \cos x)(x \cdot \cos x+\sin x-\sin x)}{(x \sin x+\cos x)^{2}} \\ &=\frac{(x \sin x+\cos x) \cdot(x \sin x)-(\sin x-x \cos x)(x \cos x)}{(x \sin x+\cos x)^{2}} \\ &=\frac{x^{2} \sin ^{2} x+x \sin x \cos x-x \sin x \cos x+x^{2} \cos ^{2} x}{(x \sin x+\cos x)^{2}} \\ &=\frac{x^{2}\left(\sin ^{2} x+\cos ^{2} x\right)}{\left(x \sin ^{2} x+\cos x\right)^{2}} \\ & f^{\prime}(x)=\frac{x^{2}}{(x \sin x+\cos x)^{2}} \text { ans. } \end{aligned}$
Q.2)	$\begin{aligned} & \text { Given } f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots \ldots \frac{x^{2}}{2}+x+1 \\ & \text { Show that } f^{\prime}(1)=100 f^{\prime}(0) \end{aligned}$
Sol.2)	We have $\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots . . . \frac{x^{2}}{2}+x+1$ Differentiate w.r.t x $\begin{aligned} f^{\prime}(x) & =\frac{100 x^{99}}{100}+\frac{99 x^{98}}{99}+\ldots \ldots . \frac{2 x}{2}+1+0 \\ & =x^{99}+x^{98}+\ldots \ldots . x+1 \\ f^{\prime}(1) & =(1)^{99}+(1)^{99}+\ldots \ldots . .1+1 \\ & =1+1+\ldots \ldots .1+1=100 \end{aligned} \quad(\text { put } x=1)$ For $f^{\prime}(0)$ put $x=0$ $f^{\prime}(0)=0+0+\ldots0+1=1$ L.H.S. $f^{\prime}(1)=100$ R.H.S. $100 f^{\prime}(0)=100 \times 1=100$ \therefore L.H.S $=$ R.H.S. ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Q.3)	$y=\sqrt{\frac{1-\cos x}{1+\cos x}}, \text { find } \frac{d y}{d x} .$
Sol.3)	$\begin{aligned} & \text { We have } y=\sqrt{\frac{1-\cos x}{1+\cos x}} \\ & \Rightarrow y=\sqrt{\frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{x}{2}\right)}} \\ & \Rightarrow y=\sqrt{\tan ^{2}\left(\frac{x}{2}\right)} \\ & \Rightarrow y=\tan \frac{x}{2} \end{aligned}$ Differentiate w.r.t x $\frac{d y}{d x}=\sec ^{2}\left(\frac{x}{2}\right) \cdot \frac{d}{d x} \cdot\left(\frac{x}{2}\right)$ $\frac{d y}{d x}=\sec ^{2}\left(\frac{x}{2}\right) \times \frac{1}{2}=\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right)$ ans.
Q.4)	$f(x)=\frac{\sin (x+a)}{\cos x}$, find $f^{1}(x)$
Sol.4)	We have $\frac{\sin (x+a)}{\cos x}$ Differentiate w.r.t x (quotient rule) $\begin{aligned} f^{\prime}(x) & =\frac{\cos x \cdot \frac{d}{d x}(\sin (x+a))-\sin (x+a) \cdot \frac{d}{d x}(\cos x)}{\cos ^{2} x} \\ & =\frac{\cos x \cdot \cos (x+a) \cdot \frac{d}{d x}(x+a)-\sin (x+a)(-\sin x)}{\cos ^{2} x} \\ & =\frac{\cos x \cdot \cos (x+a)(1)+\sin (x+a) \sin x}{\cos ^{2} x} \\ & =\frac{\cos (x+a) \cdot \cos x+\sin x \cdot \sin (x+a)}{\cos ^{2} x} \\ & =\frac{\cos x+a-x}{\cos ^{2} x} \\ & =\frac{\cos a}{\cos ^{2} x} \\ f^{\prime}(x) & =\cos a \sec ^{2} x \text { ans. } \end{aligned}$
	TYPE: $2 \lim _{x \rightarrow \infty} f(x)$
Q.5)	$\lim _{x \rightarrow \infty}\left(\frac{\sqrt{3 x^{2}+1}+\sqrt{2 x^{2}-1}}{4 x+3}\right)$ Divide $N \& D$ by x
Sol.5)	$=\lim _{x \rightarrow \infty}\left(\frac{\frac{\sqrt{3 x^{2}+1}}{x}+\frac{\sqrt{2 x^{2}-1}}{x}}{\frac{4 x+3}{x}}\right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & =\lim _{x \rightarrow \infty}\left(\frac{\sqrt{3+\frac{1}{x^{2}}}+\sqrt{2-\frac{1}{x^{2}}}}{4+\frac{3}{x}}\right) \\ & =\frac{\sqrt{3}+\sqrt{2}}{4} \text { ans. } \end{aligned}$
Q.6)	Evaluate $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)$
Sol.6)	First make function in fraction by rationalize $\begin{aligned} & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)}{\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right) \\ & =\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1-x^{2}+1}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}}\right) \\ & =\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}}\right) \end{aligned}$ Divide $N \& D$ by x $\begin{aligned} & =\lim _{x \rightarrow \infty}\left(\frac{1}{\sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}}+\sqrt{1+\frac{1}{x^{2}}}}\right) \\ & =\frac{1}{\sqrt{1}+\sqrt{1}}=\frac{1}{1+1}=\frac{1}{2} \text { ans. } \end{aligned}$
Q.7)	Evaluate $\lim _{n \rightarrow \infty}\left(\frac{1+2+3 \ldots . . . n}{n^{2}}\right)$
Sol.7)	We have $\lim _{n \rightarrow \infty}\left(\frac{1+2+3 \ldots n}{n^{2}}\right)$ $\begin{aligned} & =\lim _{n \rightarrow \infty}\left(\frac{\frac{n(n+1)}{2}}{n^{2}}\right) \\ & =\frac{1}{2} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \\ & =\frac{1}{2}(1+0)=\frac{1}{2} \text { ans. } \end{aligned}$
Q.8)	Evaluate $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-x+1}+x\right)$
Sol.8)	Let $x=-y$ When $x \rightarrow-\infty$ (limits change) Then $y \rightarrow \infty$ $\Rightarrow \lim _{y \rightarrow \infty}\left(\sqrt{y^{2}+y+1}-y\right)$ Rationalize \& proceed yourself

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\frac{1}{2}$ ans.
Q.9)	Find the derivative of $\sqrt[3]{\sin x}$ using first principle method.
Sol.9)	$\begin{aligned} & \text { Here } f(x)=\sqrt[3]{\sin x}=(\sin x)^{\frac{1}{3}} \\ & \begin{aligned} f^{\prime}(x) & =\lim _{h \rightarrow 0}\left[\frac{\sin (x+h)^{\frac{1}{3}}-(\sin x)^{\frac{1}{3}}}{h}\right] \\ & =\lim _{h \rightarrow 0}\left[\frac{\sin (x+h)^{\frac{1}{3}}-(\sin x)^{\frac{1}{3}}}{\sin (x+h)-\sin x} \times \frac{\sin (x+h)-\sin x}{h}\right] \end{aligned} \end{aligned}$ When $h \rightarrow 0$ then $\sin (x+h) \rightarrow \sin x$ $\begin{aligned} & =\lim _{\sin (x+h) \rightarrow \sin x}\left[\frac{\sin (x+h)^{\frac{1}{3}}-(\sin x)^{\frac{1}{3}}}{\sin (x+h)-\sin x}\right] \times \lim _{h \rightarrow 0}\left[\frac{\sin (x+h)-\sin x}{h}\right] \\ & =\frac{1}{3}(\sin x)^{\frac{1}{3}-1} \times \lim _{h \rightarrow 0}\left[\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right] \times \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right)\right) \\ & =\frac{1}{3} \sin ^{-\frac{2}{3}} x \lim _{h \rightarrow 0}\left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right) \times \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right)\right) \\ & =\frac{1}{3} \sin ^{-\frac{2}{3}} x \times 1 \times \cos x \\ & \therefore f^{\prime}(x)=\frac{1}{3} \sin ^{-\frac{2}{3}} x \cdot \cos x \text { ans. } \end{aligned}$
Q.10)	Find derivative of $e^{\sqrt{\tan x}}$ using first principle method.
Sol.10)	$\begin{aligned} & f(x)=e^{\sqrt{\tan x}} \\ & f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{e^{\sqrt{\tan (x+h)}}-e^{\sqrt{\tan x}}}{h}\right) \\ & \left.\Rightarrow f^{\prime}(x)=e^{\sqrt{\tan x}} \lim _{h \rightarrow 0} \frac{e^{\sqrt{\tan (x+h)}-\sqrt{\tan x}}-1}{h}\right) \\ & =e^{\sqrt{\tan x}} \lim _{h \rightarrow 0}\left(\frac{e^{\sqrt{\tan (x+h)}-\sqrt{\tan x}}-1}{\sqrt{\tan (x+h)}-\sqrt{\tan x}} \times \frac{\sqrt{\tan (x+h)}-\sqrt{\tan x}}{h}\right) \end{aligned}$ When $h \rightarrow 0 ; \sqrt{\tan (x+h)} \rightarrow \sqrt{\tan x}$ $\begin{aligned} & f^{\prime}(x)=e^{\sqrt{\tan x}} \lim _{\sqrt{\tan (x+h) \rightarrow \sqrt{\tan x}}\left[\frac{e^{\sqrt{\tan (x+h)}-\sqrt{\tan x}}-1}{\sqrt{\tan (x+h)}-\sqrt{\tan x}}\right] \times \lim _{h \rightarrow 0}\left[\frac{\sqrt{\tan (x+h)}-\sqrt{\tan x}}{h}\right]}^{=e^{\sqrt{\tan x}} \times 1 \lim _{h \rightarrow 0}\left[\frac{\sqrt{\tan (x+h)}-\sqrt{\tan x}}{h} \times \frac{\sqrt{\tan (x+h)}+\sqrt{\tan x}}{\sqrt{\tan (x+h)}+\sqrt{\tan x}}\right]} \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

$=e^{\sqrt{\tan x}} \times 1 \lim _{h \rightarrow 0}\left[\frac{\tan (x+h)-\tan x}{h} \times \frac{1}{\sqrt{\tan (x+h)}+\sqrt{\tan x}}\right]$
$=e^{\sqrt{\tan x}} \times \lim _{h \rightarrow 0}\left[\frac{\tan (h)\{1+\tan (x+h) \tan x\}}{h} \times \frac{1}{\sqrt{\tan (x+h)}+\sqrt{\tan x}}\right]$
$=e^{\sqrt{\tan x}} \times \lim _{h \rightarrow 0}\left(\frac{\tan h}{h}\right) \times \lim _{h \rightarrow 0}\left[\frac{1+\tan (x+h) \tan x}{\sqrt{\tan (x+h)}+\sqrt{\tan x}}\right]$
$=e^{\sqrt{\tan x}} \times 1\left(\frac{1+\tan ^{2} x}{\sqrt{\tan x}+\sqrt{\tan x}}\right)$
$f^{\prime}(x)=\frac{e^{\sqrt{\tan x} \cdot \sec x}}{2 \sqrt{\tan x}}$ ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

