

	Class 11 Limits & Derivatives
	Class 11 th
Q.1)	$f(x) = \frac{\sin x - x \cos x}{x \sin x + \cos x}$
Sol.1)	We have $\frac{\sin x - x \cos x}{x \sin x + \cos x}$
	Differentiate $w.r.t x$ (quotient rule)
	$f'(x) = \frac{(x \sin x + \cos x) \cdot \frac{d}{dx} (\sin x - x \cos x) - (\sin x - x \cos x) \cdot \frac{d}{dx} (x \sin x + \cos x)}{(x \sin x + \cos x)^2}$
	=
	$\frac{(x\sin x + \cos x) \cdot \left[\frac{d}{dx}(\sin x) - \left(x \cdot \frac{d}{dx}(\cos x)\right) + \cos x \frac{d}{dx}(x)\right] - (\sin x - x\cos x) \left[x \cdot \frac{d}{dx}(\sin x) + \frac{d}{dx}(x) + \frac{d}{dx}\cos x\right]}{(x\sin x + \cos x)^2}$
	$= \frac{(x \sin x + \cos x).[\cos x - (-x \sin x + \cos x)] - (\sin x - x \cos x)(x \cdot \cos x + \sin x - \sin x)}{(x \sin x + \cos x)^2}$
	$=\frac{(x\sin x + \cos x).(x\sin x) - (\sin x - x\cos x)(x\cos x)}{(x\sin x + \cos x)^2}$
	$= \frac{x^2 \sin^2 x + x \sin x \cos x - x \sin x \cos x + x^2 \cos^2 x}{(x \sin x + \cos x)^2}$
	$=\frac{x^2(\sin^2 x + \cos^2 x)}{(x\sin x + \cos x)^2}$
	$f'(x) = \frac{x^2}{(x \sin x + \cos x)^2}$ ans.
Q.2)	Given $f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$
	Show that $f'(1) = 100f'(0)$
Sol.2)	We have $\frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$
	Differentiate w.r.t x
	$f'(x) = \frac{100x^{99}}{100} + \frac{99x^{98}}{99} + \dots \frac{2x}{2} + 1 + 0$
	$= x^{99} + x^{98} + \dots x + 1$
	$f'(1) = (1)^{99} + (1)^{99} + \dots + 1$ (put $x = 1$)
	$= 1 + 1 + \dots + 1 = 100$
	For $f'(0)$ put $x = 0$
	$f'(0) = 0 + 0 + \dots \dots 0 + 1 = 1$
	L.H.S. $f'(1) = 100$
	R.H.S. $100 f'(0) = 100 \times 1 = 100$
	\therefore L.H.S = R.H.S. ans.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Q.3)	$y = \sqrt{\frac{1 - \cos x}{1 - \cos x}}$ find $\frac{dy}{dy}$
	$y = \sqrt{\frac{1-\cos x}{1+\cos x}}$, find $\frac{dy}{dx}$.
Sol.3)	We have $y = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$
	$\Rightarrow y = \sqrt{\frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)}}$
	$\Rightarrow y = \sqrt{\tan^2\left(\frac{x}{2}\right)}$
	$\Rightarrow y = \tan \frac{x}{2}$
	Differentiate w.r.t x
	$\frac{dy}{dx} = \sec^2\left(\frac{x}{2}\right) \cdot \frac{d}{dx} \cdot \left(\frac{x}{2}\right)$
	$\frac{dy}{dx} = \sec^2\left(\frac{x}{2}\right) \times \frac{1}{2} = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) \text{ ans.}$
Q.4)	$f(x) = \frac{\sin(x+a)}{\cos x}, \text{ find } f^1(x)$
Sol.4)	We have $\frac{\sin(x+a)}{\cos x}$
	Differentiate $w.r.t x$ (quotient rule)
	$f'(x) = \frac{\cos x \cdot \frac{d}{dx}(\sin(x+a)) - \sin(x+a) \cdot \frac{d}{dx}(\cos x)}{\cos^2 x}$
	$=\frac{\cos x \cdot \cos(x+a) \cdot \frac{d}{dx}(x+a) - \sin(x+a)(-\sin x)}{\cos^2 x}$
	$=\frac{\cos x . \cos(x+a)(1) + \sin(x+a) \sin x}{\cos^2 x}$
	$\cos(x+a)\cos x+\sin x\sin(x+a)$
	$\frac{-\cos^2 x}{\cos x + a - x}$
	$-\cos^2 x$
	$=\frac{\cos a}{\cos^2 x}$
	$f'(x) = \cos a \sec^2 x \text{ ans.}$
	TYPE: 2 $\lim_{x \to \infty} f(x)$
Q.5)	$\lim_{x \to \infty} \left(\frac{\sqrt{3x^2 + 1} + \sqrt{2x^2 - 1}}{4x + 3} \right)$
	Divide N & D by x
Sol.5)	$= \lim_{x \to \infty} \left(\frac{\frac{\sqrt{3x^2 + 1}}{x} + \frac{\sqrt{2x^2 - 1}}{x}}{\frac{4x + 3}{x}} \right)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$= \lim_{x \to \infty} \left(\frac{\sqrt{3 + \frac{1}{x^2} + \sqrt{2 - \frac{1}{x^2}}}}{4 + \frac{3}{x}} \right)$
	$=\frac{\sqrt{3}+\sqrt{2}}{4}$ ans.
Q.6)	Evaluate $\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 + 1} \right)$
Sol.6)	First make function in fraction by rationalize
	$= \lim_{x \to \infty} \frac{\left(\sqrt{x^2 + x + 1} - \sqrt{x^2 + 1}\right)}{\left(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}\right)} \left(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}\right)$
	$= \lim_{x \to \infty} \left(\frac{x^2 + x + 1 - x^2 + 1}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \right)$
	$= \lim_{x \to \infty} \left(\frac{x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \right)$
	Divide N & D by x
	$= \lim_{x \to \infty} \left(\frac{1}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 + \frac{1}{x^2}}} \right)$
	$=\frac{1}{\sqrt{1}+\sqrt{1}}=\frac{1}{1+1}=\frac{1}{2}$ ans.
Q.7)	Evaluate $\lim_{n \to \infty} \left(\frac{1+2+3n}{n^2} \right)$
Sol.7)	We have $\lim_{n \to \infty} \left(\frac{1+2+3n}{n^2} \right)$
	$= \lim_{n \to \infty} \left(\frac{\frac{n(n+1)}{2}}{n^2} \right)$
	$=\frac{1}{2}\lim_{n\to\infty}\left(1+\frac{1}{n}\right)$
	$=\frac{1}{2}(1+0)=\frac{1}{2}$ ans.
Q.8)	Evaluate $\lim_{x \to -\infty} (\sqrt{x^2 - x + 1} + x)$
Sol.8)	Let $x = -y$
	When $x \to -\infty$ (limits change)
	Then $y \to \infty$
	$\Rightarrow \lim_{y \to \infty} \left(\sqrt{y^2 + y + 1} - y \right)$
	Rationalize & proceed yourself

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$\frac{1}{2}$ ans.
Q.9)	Find the derivative of $\sqrt[3]{\sin x}$ using first principle method.
Sol.9)	Here $f(x) = \sqrt[3]{\sin x} = (\sin x)^{\frac{1}{3}}$
	$f'(x) = \lim_{h \to 0} \left[\frac{\sin(x+h)^{\frac{1}{3}} - (\sin x)^{\frac{1}{3}}}{h} \right]$
	$= \lim_{h \to 0} \left[\frac{\sin(x+h)^{\frac{1}{3}} - (\sin x)^{\frac{1}{3}}}{\sin(x+h) - \sin x} \times \frac{\sin(x+h) - \sin x}{h} \right]$
	When $h \to 0$ then $\sin(x + h) \to \sin x$
	$= \lim_{\sin(x+h)\to\sin x} \left[\frac{\sin(x+h)^{\frac{1}{3}} - (\sin x)^{\frac{1}{3}}}{\sin(x+h) - \sin x} \right] \times \lim_{h\to 0} \left[\frac{\sin(x+h) - \sin x}{h} \right]$
	$= \frac{1}{3} (\sin x)^{\frac{1}{3}-1} \times \lim_{h \to 0} \left[\frac{\sin \frac{h}{2}}{\frac{h}{2}} \right] \times \lim_{h \to 0} \left(\cos \left(\frac{2x+h}{2} \right) \right)$
	$=\frac{1}{3}\sin^{-\frac{2}{3}}x\lim_{h\to 0}\left(\frac{\sin\frac{h}{2}}{\frac{h}{2}}\right)\times\lim_{h\to 0}\left(\cos\left(\frac{2x+h}{2}\right)\right)$
	$=\frac{1}{3}\sin^{-\frac{2}{3}}x \times 1 \times \cos x$
	$\therefore f'(x) = \frac{1}{3} \sin^{-\frac{2}{3}} x \cdot \cos x \text{ ans.}$
Q.10)	Find derivative of $e^{\sqrt{\tan x}}$ using first principle method.
Sol.10)	$f(x) = e^{\sqrt{\tan x}}$
	$f'(x) = \lim_{h \to 0} \left(\frac{e^{\sqrt{\tan(x+h)}} - e^{\sqrt{\tan x}}}{h} \right)$
	$\Rightarrow f'(x) = e^{\sqrt{\tan x}} \lim_{h \to 0} \left(\frac{e^{\sqrt{\tan(x+h)} - \sqrt{\tan x}} - 1}{h} \right)$
	$= e^{\sqrt{\tan x}} \lim_{h \to 0} \left(\frac{e^{\sqrt{\tan(x+h)} - \sqrt{\tan x}} - 1}{\sqrt{\tan(x+h)} - \sqrt{\tan x}} \times \frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h} \right)$
	When $h \to 0$; $\sqrt{\tan(x+h)} \to \sqrt{\tan x}$
	$f'(x) = e^{\sqrt{\tan x}} \lim_{\sqrt{\tan(x+h)} \to \sqrt{\tan x}} \left[\frac{e^{\sqrt{\tan(x+h)} - \sqrt{\tan x}} - 1}{\sqrt{\tan(x+h)} - \sqrt{\tan x}} \right] \times \lim_{h \to 0} \left[\frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h} \right]$
	$= e^{\sqrt{\tan x}} \times \lim_{h \to 0} \left[\frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h} \times \frac{\sqrt{\tan(x+h)} + \sqrt{\tan x}}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \right]$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday.com

$$= e^{\sqrt{\tan x}} \times \lim_{h \to 0} \left[\frac{\tan(x+h) - \tan x}{h} \times \frac{1}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \right]$$
$$= e^{\sqrt{\tan x}} \times \lim_{h \to 0} \left[\frac{\tan(h) \left\{ 1 + \tan(x+h) \tan x \right\}}{h} \times \frac{1}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \right]$$
$$= e^{\sqrt{\tan x}} \times \lim_{h \to 0} \left(\frac{\tan h}{h} \right) \times \lim_{h \to 0} \left[\frac{1 + \tan(x+h) \tan x}{\sqrt{\tan(x+h)} + \sqrt{\tan x}} \right]$$
$$= e^{\sqrt{\tan x}} \times 1 \left(\frac{1 + \tan^2 x}{\sqrt{\tan x} + \sqrt{\tan x}} \right)$$
$$f'(x) = \frac{e^{\sqrt{\tan x}} \sec^2 x}{2\sqrt{\tan x}} \text{ ans.}$$

www.studiestoday.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.