

|        | LIMITS & DERIVATIVES                                                                    |
|--------|-----------------------------------------------------------------------------------------|
|        | Class XI                                                                                |
|        | Limits:-                                                                                |
| Q.1)   | If $f(x) = \begin{cases} 5x - 4; 0 < x < 1\\ 4x^3 - 3x; 1 < x < 2 \end{cases}$          |
|        | Evaluate $\lim_{x \to a} f(x)$                                                          |
| Sol.1) | For L.H.L. : $f(x) = 5x - 4$                                                            |
|        | For R.H.L: $f(x) = 4x^3 - 3x$                                                           |
|        | L.H.L. = $\lim_{x \to 1^{-}} (5x - 4)$                                                  |
|        | Put $x = 1 - h \& h \to 0$                                                              |
|        | $\therefore$ L.H.L. = $\lim_{h\to 0} (5(1-h)-4)$                                        |
|        | $\Rightarrow L.H.L = 5 - 4 = 1$                                                         |
|        | ∴ L.H.L.= 1                                                                             |
|        | Now, R.H.L.= $\lim_{x \to 1^+} (4x^3 - 3x)$                                             |
|        | Put $x = 1 + h \& h \to 0$                                                              |
|        | $\therefore \text{R.H.L.} = \lim_{h \to 0} [4(1+h)^3 - 3(1+h)]$                         |
|        | $\Rightarrow$ R.H.L = $4(1)^3 - 3(1) = 1$                                               |
|        | ∴ R.H.L.= 1                                                                             |
|        | Since, L.H.L. = R.H.L. = 1                                                              |
|        | $\therefore \lim_{x \to 1} f(x) \text{ Exists & } \lim_{x \to 1} f(x) = 1 \text{ ans.}$ |
| Q.2)   | If $f(x) = \begin{cases} \frac{x- x }{x} ; x \neq 0 \\ 2; x = 0 \end{cases}$            |
|        | Show that $\lim_{x\to 0} f(x)$ does not exists.                                         |
| Sol.2) | Here, for L.H.L. & R.H.L.                                                               |
|        | $f(x) = \left\{ \frac{x -  x }{x} \right\}$                                             |
|        | $L.H.L. = \lim_{x \to 0^-} \left[ \frac{x -  x }{x} \right]$                            |
|        | Put $x = 0 - h = -h \& h \to 0$                                                         |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.



|        | Jtuares roudy.com                                                                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------------|
|        | $\therefore \text{L.H.L.} = \lim_{h \to 0} \left( \frac{-h -  -h }{-h} \right)$                                         |
|        | $\Rightarrow$ L.H.L. $=\lim_{h\to 0} \left(\frac{-h-h}{-h}\right) = \lim_{h\to 0} \left(\frac{-2h}{-h}\right)$          |
|        | $\Rightarrow \lim_{h \to 0} (2)$                                                                                        |
|        | ∴ L.H.L.= 2                                                                                                             |
|        | Now, R.H.L. = $\lim_{x \to 0^+} \left[ \frac{x -  x }{x} \right]$                                                       |
|        | Put $x = 0 + h = h \& h \to 0$                                                                                          |
|        | $\therefore R.H.L. = \lim_{h \to 0} \left( \frac{h -  -h }{-h} \right) = \lim_{h \to 0} \left( \frac{h - h}{h} \right)$ |
|        | $\Rightarrow \text{R.H.L.} = \lim_{h \to 0} \left( \frac{0}{h} \right) = \lim_{h \to 0} (0) = 0$                        |
|        | ∴ R.H.L.= 0                                                                                                             |
|        | Clearly L.H.L. ≠ R.H.L.                                                                                                 |
|        | $\lim_{x\to 0} f(x) \text{ does not exists ans.}$                                                                       |
| Q.3)   | $f(x) = \begin{cases} \frac{4x - 5}{x - 4}; x \le 2\\ x - \pi; x > 2 \end{cases}$                                       |
|        | Find value of $\pi$ if $\lim_{x\to 2} f(x)$ exists.                                                                     |
| Sol.3) | For L.H.L. $f(x) = 4x - 5$                                                                                              |
|        | For R.H.L. $f(x) = x - \pi$                                                                                             |
|        | L.H.L. = $\lim_{x \to 2^+} (4x - 5)$                                                                                    |
|        | Put $x = 2 - h \& h \to 0$                                                                                              |
|        | $\Rightarrow \text{L.H.L.} = \lim_{h \to 0} (4(2 - h) - 5) = \lim_{h \to 0} (8 - 5)$                                    |
|        | $\Rightarrow$ L.H.L. $=\lim_{h\to 0}(3)$                                                                                |
|        | $\Rightarrow$ L.H.L. = 3                                                                                                |
|        | Now, R.H.L. = $\lim_{x \to 2^+} (x - \pi)$                                                                              |
|        | Put $x = 2 + h$ and $h \to 0$                                                                                           |
|        | $\Rightarrow$ R.H.L. = $\lim_{h\to 0} (2 + h - \pi) = \lim_{h\to 0} (2 - \pi)$                                          |
|        | $\therefore$ R.H.L.= $2 - \pi$                                                                                          |
|        | Since, L.H.L. = R.H.L. = 1                                                                                              |
|        | $\lim_{x\to 2} f(x) \text{ exists (given)}$                                                                             |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.



|        | y                                                                                                                                                |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|        | ∴ L.H.L. = R.H.L.                                                                                                                                |
|        | $\Rightarrow 3 - 2\pi \Rightarrow \pi = -1 \text{ ans.}$                                                                                         |
| Q.4)   | Show that $\lim_{x\to 0} \left(\frac{e^{1/x}-1}{e^{1/x}+1}\right)$ does not exists.                                                              |
| Sol.4) | For L.H.L. & R.H.: $f(x) = (\frac{e^{1/x} - 1}{e^{1/x} + 1})$                                                                                    |
|        | L.H.L. = $\lim_{x \to 0^-} \left( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right)$                                                                       |
|        | Put $x = 0 - h = -h \& h \to 0$                                                                                                                  |
|        | $\therefore \text{L.H.L.} = \lim_{h \to 0} \left( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right)$                                                       |
|        | Put directly $h=0$                                                                                                                               |
|        | $\Rightarrow \text{L.H.L} = \frac{e^{-\infty} - 1}{e^{-\infty} + 1} = \frac{0 - 1}{0 + 1}$ $\Rightarrow \text{L.H.L.} = -1$ $e^{-\infty} = 0$    |
|        | ⇒ L.H.L.= −1                                                                                                                                     |
|        | Now, R.H.L. = $\lim_{x \to 0^+} \left( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right)$                                                                  |
|        | Put $x = 0 + h = h \& h \to 0$                                                                                                                   |
|        | $\therefore \text{R.H.L.} = \lim_{h \to 0} \left( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right)$                                                       |
|        | (don't put directly $h=0$ ) $\frac{\infty}{\infty}$ form                                                                                         |
|        | $\Rightarrow \text{R.H.L.} = \lim_{h \to 0} \left( \frac{1 - \frac{1}{e^{1}/h}}{1 + \frac{1}{e^{1}/h}} \right) \qquad \text{divide by } e^{1/h}$ |
|        | $\Rightarrow \text{R.H.L.} = \lim_{h \to 0} \left( \frac{1 - e^{-1/h}}{1 + e^{-1/h}} \right)$                                                    |
|        | Put $h=0$                                                                                                                                        |
|        | $\Rightarrow \text{R.H.L.} = \lim_{h \to 0} \left( \frac{1 - e^{-\infty}}{1 + e^{-\infty}} \right) = \frac{1 - 0}{1 + 0} \ e^{-\infty} = 0$      |
|        | $\Rightarrow$ R.H.L. = 1                                                                                                                         |
|        | Since, L.H.L. $\neq$ R.H.L. = 1                                                                                                                  |
|        | $\therefore \lim_{x \to 0} f(x) \text{ does not Exists ans.}$                                                                                    |
| Q.5)   | $f(x) = \begin{cases} a + bx; x < 1 \\ 4; x = 1 \\ b - ax; x > 1 \end{cases}$                                                                    |
|        | and if $\lim_{x\to 1} f(x) = f(1)$ , what are possible values of $a \& b$ ?                                                                      |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.



|        | Ctural College Collin                                                                        |
|--------|----------------------------------------------------------------------------------------------|
| Sol.5) | For L.H.L. $f(x) = a + bx$                                                                   |
|        | For R.H.L. $f(x) = b - ax$                                                                   |
|        | and $f(1) = 4$ (when $x = 1; f(x) = 4$ )                                                     |
|        | given, $\lim_{x \to 1} f(x) = f(1)$                                                          |
|        | $\Rightarrow \lim_{x \to 1} f(x) = 4$                                                        |
|        | $\Rightarrow$ L.H.L. = R.H.L. = 4                                                            |
|        | $\Rightarrow \lim_{x \to 1^{-}} (a + bx) = \lim_{x \to 1^{+}} (b - ax) = 4$                  |
|        | $Put x = 1 - h \qquad \qquad Put x = 1 + h$                                                  |
|        | $\& h \to 0 \qquad \& h \to 0$                                                               |
|        | $\Rightarrow \lim_{h \to 0} (a + b(1 - h)) = \lim_{h \to 0} (b - a(1 + h)) = 4$              |
|        | $\Rightarrow a + b = b - a = 4$                                                              |
|        | $\Rightarrow a+b=4 \& b-a=4$                                                                 |
|        | Solving we get $a=0$ & $b=4$ ans.                                                            |
| Q.6)   | $f(x) = \begin{cases} mx^2 + n; x < 0\\ nx + m; 0 \le x \le 1\\ nx^3 + m; x > 1 \end{cases}$ |
|        | For what integers $m$ and $n$ does the $\lim_{x\to 0} f(x)$ and $\lim_{x\to 1} f(x)$ exists. |
| Sol.6) | Given that $\lim_{x\to 0} f(x)$ exists                                                       |
|        | For L.H.L. $f(x) = nx + m$                                                                   |
|        | L.H.L=R.H.L.                                                                                 |
|        | $\Rightarrow \lim_{x \to 0^{-}} (mx^{2} + n) = \lim_{x \to 0^{+}} (nx + m)$                  |
|        | $Put x = 0 - h = -h \qquad Put x = 0 + h = h$                                                |
|        | $\& h \to 0 \qquad \& h \to 0$                                                               |
|        | $\therefore \lim_{h \to 0} (m(-h)^2 + n) = \lim_{h \to 0} (n(h) + m)$                        |
|        | $\Rightarrow 0 + n = 0 + m$                                                                  |
|        | $\Rightarrow = m = n \dots (i)$                                                              |
|        | Given that $\lim_{x\to 0} f(x)$ exists                                                       |
|        | For L.H.L. $f(x) = nx + m$                                                                   |
|        | For R.H.L. $f(x) = nx^3 + m$                                                                 |
|        | L.H.L. = R.H.L.                                                                              |
|        |                                                                                              |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.



|        | $\Rightarrow \lim_{x \to 1^-} (nx + m) = \lim_{x \to 1^+} (nx^3 + m)$                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Put $x = 1 - h$ Put $x = 1 + h$                                                                                                                    |
|        | $ \begin{cases} \& h \to 0 \end{cases} \qquad \& h \to 0 $                                                                                         |
|        | $\Rightarrow \lim_{h \to 0} (n(1-h) + m) = \lim_{h \to +} (n(1+h)^3 + m)$                                                                          |
|        | (put directly $h=0$ )                                                                                                                              |
|        | $\Rightarrow n + m = n + m \dots (ii)$                                                                                                             |
|        | From (i) & (ii)                                                                                                                                    |
|        | m and $n$ can be any integers such that $m=n$ ans.                                                                                                 |
| Q.7)   | $f(x) = \begin{cases}  x  + 1; x < 0 \\ 0; x = 0 \\  x  - 1; x > 0 \end{cases}$<br>For what value(s) of $a$ does the $\lim_{x \to 0} f(x)$ exists. |
| Sol.7) | For L.H.L. $f(x) =  x  + 1$                                                                                                                        |
| 301.77 | For R.H.L. $f(x) =  x  + 1$                                                                                                                        |
|        | L.H.L. = $\lim_{x \to 0^{-}} ( x  + 1)$                                                                                                            |
|        | Put $x = 0 - h = -h \& h \to 0$                                                                                                                    |
|        | $ \therefore \text{L.H.L.} = \lim_{h \to 0} ( -h  + 1) = \lim_{h \to 0} (h + 1) = 0 + 1 $                                                          |
|        | ⇒ L.H.L. = 1                                                                                                                                       |
|        | Now, R.H.L. = $\lim_{x\to 0^+} ( x -1)$                                                                                                            |
|        | Put $x = 0 + h = h \& h \to 0$                                                                                                                     |
|        | $\therefore$ R.H.L. $\lim_{h\to 0}( -h -1) = \lim_{h\to 0}(h-1) = 0-1$                                                                             |
|        | $\Rightarrow$ R.H.L. $= -1$                                                                                                                        |
|        | Since L.H.L ≠ R.H.L.                                                                                                                               |
|        | $\lim_{x\to 0} f(x) \text{ Does not exist.} \dots (i)$                                                                                             |
|        | But we are given, $\lim_{x\to a} f(x)$ exists (ii)                                                                                                 |
|        | From (i) & (ii)                                                                                                                                    |
|        | We conclude that $a$ can be any real no. except $a=0$                                                                                              |
|        | $\therefore a \in R - \{0\} \text{ ans.}$                                                                                                          |
| Q.8)   | $f(x) \begin{cases} 2x+3; x \le 0 \\ 3(x+1); x > 0 \end{cases}$                                                                                    |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.



|         | Evaluate $\lim_{x \to 1} f(x)$                                                                    |
|---------|---------------------------------------------------------------------------------------------------|
| Sol.8)  | For L.H.L. $f(x) = 3(x+1)$                                                                        |
|         | Also for R.H.L. $f(x) = 3(x+1)$                                                                   |
|         | L.H.L. = $\lim_{x \to 1^{-}} 3(x+1)$                                                              |
|         | Put $x = 1 - h \& h \to 0$                                                                        |
|         | $ \therefore \text{L.H.L.} = \lim_{h \to 0} (3(1 - h + 1)) = 3(2) = 6 $                           |
|         | ⇒ L.H.L. = 6                                                                                      |
|         | Now, R.H.L. = $\lim_{x \to 1^+} (3(x+1))$                                                         |
|         | Put $x = 1 + h = h \& h \to 0$                                                                    |
|         | $\therefore \text{R.H.L.} \lim_{h \to 0} (3(1+h+1) = 3(2) = 6$                                    |
|         | $\Rightarrow$ R.H.L. = 6                                                                          |
|         | Since L.H.L = R.H.L.                                                                              |
|         | $\lim_{x \to 0} f(x) \text{ Exist and } \lim_{x \to 1} f(x) = 6 \text{ ans.}$                     |
| Q.9)    | $a_1, a_2, a_3$ $a_n$ are any real numbers $f(x) = (x - a_1)(x - a_2)(x - a_3)$ $(x - a_n)$ .     |
|         | What is $\lim_{x \to a} f(x)$ ? Also compute $\lim_{x \to a} f(x)$ .                              |
| Sol.9)  | $\lim_{x \to a_1} f(x) = \lim_{x \to a_1} [(x - a_1)(x - a_2)(x - a_3) \dots (x - a_n)]$          |
|         | $= (a_1 - a_1)(a_1 - a_2)(a_1 - a_3) \dots (a_1 - a_n)$                                           |
|         | $= 0(a_1 - a_2)(a_1 - a_3)a_1 - a_n$                                                              |
|         | = 0 ans.                                                                                          |
|         | $\lim_{x \to a} f(x) = \lim_{x \to a} [(x - a_1)(x - a_2) \dots (x - a_n)]$                       |
|         | $=(a-a_1)(a-a_2)(a-a_n)$ ans.                                                                     |
|         | TYPE: 2 FACTORIZE                                                                                 |
|         | Formula: $a^2 - b^2$ , $a^3 - b^3$ , $a^4 - b^4$ , quadratic equation, cubic (hit & trial) L.C.M. |
| Q.10)   | Evaluate: $\lim_{x \to 1} \left[ \frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$         |
| Sol.10) | We have $\lim_{x \to 1} \left[ \frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x} \right]$           |
|         | $= \lim_{x \to 1} \left[ \frac{x-2}{x(x-1)} - \frac{1}{x(x^2+3x+2)} \right]$                      |
|         | $= \lim_{x \to 1} \left[ \frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)} \right]$                      |

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.



$$= \lim_{x \to 1} \left[ \frac{(x-2)^2 - 1}{x(x-1)(x-2)} \right]$$

$$= \lim_{x \to 1} \left[ \frac{x^2 - 4x + 4 - 1}{x(x-1)(x-2)} \right]$$

$$= \lim_{x \to 1} \left[ \frac{(x-3)(x-1)}{x(x-1)(x-2)} \right]$$

$$= \lim_{x \to 1} \left[ \frac{(x-3)}{x(x-2)} \right]$$

$$= \lim_{x \to 1} \left[ \frac{(x-3)}{x(x-2)} \right]$$

$$= \frac{(1-3)}{(1)(1-2)} = \frac{-2}{-1} = 2 \text{ ans.}$$

MININ Studies to day. com

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.