Chapter 11

CONIC SECTION

CIRCLE:

The equation of a circle with centre at (h, k) and radius r is $(x - h)^2 + (y - k)^2 = r^2$

Equation of a circle with centre at origin and radius r is $x^2 + y^2 = r^2$

PARABOLA(Symmetric about its axis)

	Right	Left	Upward	Downward
Equation	$y^2 = 4ax$	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$
Axis	y = 0	y= 0	x=0	x=0
Figure				
Focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)
Vertex	(0,0)	(0,0)	(0,0)	(0,0)
Latus	4a	4a	4a	4a
Rectum				
Directrix	x = -a	x = a	y = -a	y =a

ELLIPSE (Symmetric about both the axis)

Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$
Equation of the major	y=0	x=0
axis		
Length of major axis	2a	2a
Length of minor axis	2b	2b
Vertices	$(\pm a, 0)$	(0,± a)
Foci	$(\pm c, 0)$	(0,± c)
Eccentricity	$e = \frac{c}{a}$	$e = \frac{c}{a}$
Latus Rectum	$2b^2$	$2b^2$
	\overline{a}	\overline{a}

Downloaded from www.studiestoday.com

HYPERBOLA

Equation	x^2 y^2	y^2 x^2
	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$	$\frac{1}{a^2} - \frac{1}{b^2} = 1$
Equation of the	y =0	x =0
transverse axis		
Length of transverse axis	2a	2a
Length of conugate axis	2b	2b
Vertices	$(\pm a, 0)$	$(0,\pm a)$
Foci	$(\pm c, 0)$	(0,± c)
Eccentricity	$e = \frac{c}{a}$	$e = \frac{c}{a}$
Latus Rectum	$2b^2$	$2b^2$
	${a}$	\overline{a}

TEXT BOOK QUESTIONS

- * \rightarrow Exercise 11.1 \rightarrow Qns 10,11
- * \rightarrow Exercise 11.2 \rightarrow Qns 5,6,8
- * \rightarrow Exercise 11.3 \rightarrow Qns 5,6,7,8,9,10
- * \rightarrow Exercise 11.4 \rightarrow Qns 4,5,6
- * \rightarrow Example \rightarrow 4,17,18,19
- ** \rightarrow Exercise 11.1 \rightarrow Qns 9,12,13,14
- ** \rightarrow Exercise 11.2 \rightarrow Qns 11,12
- ** \rightarrow Exercise 11.3 \rightarrow Qns 13 to Qns 20
- ** \rightarrow Exercise 11.4 \rightarrow Qns 10 to Qns 15

Extra Questions:

1. Find the centre and the radius of $3x^2 + 3y^2 + 6x - 4y - 1 = 0$

(ans: (-1, 2/3), 4/3)

- 2. Find the value of p so that $x^2 + y^2 + 8x + 10y + p = 0$, is the equation of the circle of radius 7 units. (ans : -8)
- 3. Find the equation of the circle when the end points of the diameter are

(ans:
$$x^2 + y^2 - x + 2y - 21 = 0$$
)

Downloaded from www.studiestoday.com

4. Find the equation of the circle circumscribing the triangle formed by the straight lines: x + y = 6, 2x + y = 4 and x + 2y = 5

(ans:
$$x^2 + y^2 - 17x - 19y + 50 = 0$$
)

- 5. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to the ends of its latus rectum. (ans: $\frac{1}{2}$ x 12 x 3 sq.units)
- 6. Find the equation of the ellipse with eccentricity $\frac{3}{4}$, foci on y- axis, center at the origin and passes through the point (6, 4) (ans: $16x^2 + 7y^2 = 688$)
- 7. Find the length of major axis and minor axis of $4x^2 + y^2 = 100$
- 8. Find the equation of the parabola with the centre at origin, length of transverse axis 6 units and a focus at (0, 4). (ans: $7y^2 9x^2 = 63$)
- 9. The line 5x y = 3 is a tangent to a circle at a point (2, 7) and its centre is on the line x + 2y = 19. Find the equation of the circle (ans: $x^2 + y^2 14x 12y + 59 = 0$)
- 10. Find equation of the circle which touches the y axis at origin and whose radius is 3 units. (ans: $x^2 + y^2 6x = 0$)