Downloaded from www.studiestoday.com

CHAPTER - 11

CONIC SECTIONS

KEY POINTS

- Circle, ellipse, parabola and hyperbola are curves which are obtained by intersection of a plane and cone in different positions
- Circle : It is the set of all points in a plane that are equidistant from a fixed point in that plane
- Equation of circle : $(x-h)^{2}+(y-k)^{2}=r^{2}$

Centre (h, k), radius $=\mathrm{r}$

- Parabola : It is the set of all points in a plane which are equidistant from a fixed point (focus) and a fixed line (directrix) in the plane. Fixed point does not lie on the line.

$x^{2}=4 a y$

Downloaded from www.studiestoday.com

Main facts about the Parabola

Equation	$y^{2}=4 a x$	$y^{2}=-4 a x$	$x^{2}=4 a y$	$x^{2}=-4 a y$
	$(a>0)$	$a>0$	$a>0$	$a>0$
	Right hand	Left hand	Upwards	Downwards
Axis	$y=0$	$y=0$	$x=0$	$x=0$
Directrix	$x+a=0$	$x-a=0$	$y+a=0$	$y-a=0$
Focus	$(a, 0)$	$(-a, 0)$	$(0, a)$	$(0,-a)$
Length of latus-rectum	$4 a$	$4 a$	$4 a$	$4 a$
Equation of latus-rectum	$x-a=0$	$x+a=0$	$y-a=0$	$y+a=0$

- Latus Rectum : A chord through focus perpendicular to axis of parabola is called its latus rectum.
- Ellipse : It is the set of points in a plane the sum of whose distances from two fixed points in the plane is a constant and is always greater than the distances between the fixed points

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$

$$
a>b>0, a>b>0
$$

$$
c=\sqrt{a^{2}-b^{2}}
$$

Main facts about the ellipse

Equation	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,	$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
	$a>0, b>0$	$a>0, b>0$
Centre	$(0,0)$	$(0,0)$
Major axis lies along	x-axis	y-axis
Length of major axis	$2 a$	$2 a$

Downloaded from www.studiestoday.com

Foci
Vertices
(-c, 0), (c, 0)
(0, -c),(0, c)
(-a, 0), (a, 0)
(0, -a), (0, a)
Eccentricity e
$\frac{\mathrm{c}}{\mathrm{a}} \quad \frac{\mathrm{c}}{\mathrm{a}}$
Length of latus-rectum
$\frac{2 b^{2}}{a} \quad \frac{2 b^{2}}{a}$

- Latus rectum : Chord through foci perpendicular to major axis called latus rectum.
- Hyperbola : It is the set of all points in a plane, the differences of whose distance from two fixed points in the plane is a constant.

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
c=\sqrt{a^{2}+b^{2}}
$$

Main facts about the Hyperbola

Equation	$\begin{aligned} & \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\ & a>0, b>0 \end{aligned}$	$\begin{aligned} & \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \\ & a>0, b>0 \end{aligned}$
Centre	$(0,0)$	$(0,0)$
Transverse axis lies along	x-axis	y-axis
Length of transverse axis	2a	2a
Length of conjugate axis	2b	2b
Foci	(-c, 0), (c, 0)	(0, -c), (0, c)
Vertices	(-a, 0), (a, 0)	(0, -a), (0, a)
Eecentricity e	$\frac{\mathrm{c}}{\mathrm{a}}$	$\frac{\mathrm{c}}{\mathrm{a}}$
Length of latus-rectum	$2 b^{2}$	$2 b^{2}$

Downloaded from www.studiestoday.com

- Latus Rectum : Chord through foci perpendicular to transverse axis is called latus rectum.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find the centre and radius of the circle

$$
3 x^{2}+3 y^{2}+6 x-4 y-1=0
$$

2. Does $2 x^{2}+2 y^{2}+3 y+10=0$ represent the equation of a circle? Justify.
3. Find equation of circle whose end points of one of its diameter are (-2 , $3)$ and ($0,-1$).
4. Find the value(s) of p so that the equation $x^{2}+y^{2}-2 p x+4 y-12=0$ may represent a circle of radius 5 units.
5. If parabola $y^{2}=p x$ passes through point $(2,-3)$, find the length of latus rectum.
6. Find the coordinates of focus, and length of latus rectum of parabola $3 y^{2}=8 x$.
7. Find the eccentricity of the ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

8. One end of diameter of a circle $x^{2}+y^{2}-6 x+5 y-7=0$ is (7, -8$)$. Find the coordinates of other end.
9. Find the equation of the ellipse coordinates of whose foci are $(\pm 2,0)$ and length of latus rectum is $\frac{10}{3}$.
10. Find the equation of ellipse with eccentricity $\frac{3}{4}$, centre at origin, foci on y-axis and passing through point $(6,4)$.
11. Find the equation of hyperbola with centre at origin, transverse axis along x-axis, eccentricity $\sqrt{5}$ and sum of lengths of whose axes is 18.
Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com

12. Two diameters of a circle are along the lines $x-y-9=0$ and $x-2 y-7=0$ and area of circle is 154 square units, find its equation.
13. Find equation(s) of circle passing through points $(1,1),(2,2)$ and whose radius is 1 unit.
14. Find equation of circle concentric with circle $4 x^{2}+4 y^{2}-12 x-16 y-21=0$ and of half its area.
15. Find the equation of a circle whose centre is at $(4,-2)$ and $3 x-4 y+5=$ 0 is tangent to circle.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

16. Show that the four points $(7,5),(6,-2)(-1,-1)$ and $(0,6)$ are concyclic. [Concylic points : Four or more points which lie on a circle].

ANSWERS

1. $\left(-1, \frac{2}{3}\right), \frac{4}{3}$
2. No
3. $x^{2}+y^{2}+2 x-2 y-3=0$ or $(x+1)^{2}+(y-1)^{2}=5$
4. $-3,+3$
5. $\frac{9}{2}$
6. $\left(\frac{2}{3}, 0\right), \frac{8}{3}$
7. $\frac{4}{5}$
8. $(-1,3)$
9. $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{5}=1$
10. $16 x^{2}+7 y^{2}=688$
11. $4 x^{2}-y^{2}=36$
12. $x^{2}+y^{2}-22 x-4 y+76=0$
[Hint : Point of intersection of two diameters is the centre]
13. $x^{2}+y^{2}-2 x-4 y+4=0, x^{2}+y^{2}-4 x-2 y+4=0$
14. $2 x^{2}+2 y^{2}-6 x+8 y+1=0$
15. $x^{2}+y^{2}-8 x+4 y-5=0$

Downloaded from www.studiestoday.com

