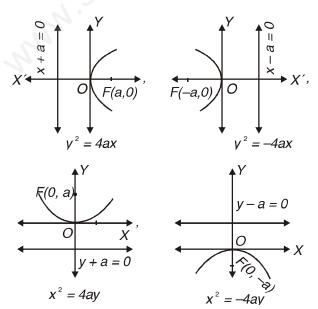
CHAPTER - 11

CONIC SECTIONS

KEY POINTS

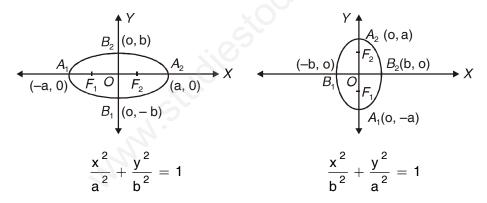
- Circle, ellipse, parabola and hyperbola are curves which are obtained by intersection of a plane and cone in different positions
- Circle: It is the set of all points in a plane that are equidistant from a fixed point in that plane
- Equation of circle: $(x h)^2 + (y k)^2 = r^2$ Centre (h, k), radius = r
- Parabola: It is the set of all points in a plane which are equidistant from a fixed point (focus) and a fixed line (directrix) in the plane. Fixed point does not lie on the line.



Main facts about the Parabola

Equation	$y^2 = 4 a x$ (a > 0) Right hand	$y^2 = -4 a x$ $a > 0$ Left hand	$x^2 = 4 a y$ a > 0 Upwards	$x^2 = -4$ a y a > 0 Downwards
Axis	y = 0	y = 0	x = 0	x = 0
Directrix	x + a = 0	x - a = 0	y + a = 0	y - a = 0
Focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)
Length of latus-rectum	4a	4a	4a	4a
Equation of latus-rectum	x - a = 0	x + a = 0	y - a = 0	y + a = 0

- Latus Rectum: A chord through focus perpendicular to axis of parabola is called its latus rectum.
- Ellipse: It is the set of points in a plane the sum of whose distances from two fixed points in the plane is a constant and is always greater than the distances between the fixed points



$$a > b > 0$$
, $a > b > 0$

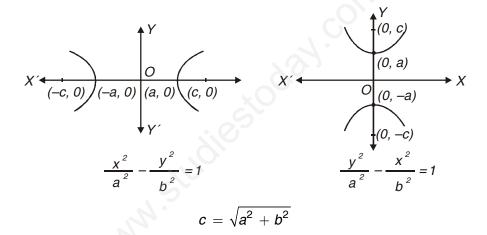
$$c = \sqrt{a^2 - b^2}$$

Main facts about the ellipse

Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$
	a > 0, b > 0	a > 0, b > 0
Centre	(0,0)	(0,0)
Major axis lies along	x-axis	y–axis
Length of major axis	2a	2a
	01	

Foci	(-c, 0), (c, 0)	(0, -c), (0, c)
Vertices	(-a, 0), (a, 0)	(0, -a), (0, a)
Eccentricity e	c a	c a
Length of latus-rectum	$\frac{2b^2}{a}$	$\frac{2b^2}{a}$

- Latus rectum: Chord through foci perpendicular to major axis called latus rectum.
- **Hyperbola**: It is the set of all points in a plane, the differences of whose distance from two fixed points in the plane is a constant.



Main facts about the Hyperbola

Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
	a > 0, b > 0	a > 0, b > 0
Centre	(0,0)	(0,0)
Transverse axis lies along	x-axis	y-axis
Length of transverse axis	2a	2a
Length of conjugate axis	2b	2b
Foci	(-c, 0), (c, 0)	(0, -c), (0, c)
Vertices	(-a, 0), (a, 0)	(0, -a), (0, a)
Eecentricity e	c a	c a
Length of latus-rectum	$\frac{2b^2}{a}$	$\frac{2b^2}{a}$

 Latus Rectum: Chord through foci perpendicular to transverse axis is called latus rectum.

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

1. Find the centre and radius of the circle

$$3x^2 + 3y^2 + 6x - 4y - 1 = 0$$

- 2. Does $2x^2 + 2y^2 + 3y + 10 = 0$ represent the equation of a circle? Justify.
- 3. Find equation of circle whose end points of one of its diameter are (-2, 3) and (0, -1).
- 4. Find the value(s) of p so that the equation $x^2 + y^2 2px + 4y 12 = 0$ may represent a circle of radius 5 units.
- 5. If parabola $y^2 = px$ passes through point (2, -3), find the length of latus rectum.
- 6. Find the coordinates of focus, and length of latus rectum of parabola $3y^2 = 8x$.
- 7. Find the eccentricity of the ellipse

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

- 8. One end of diameter of a circle $x^2 + y^2 6x + 5y 7 = 0$ is (7, -8). Find the coordinates of other end.
- 9. Find the equation of the ellipse coordinates of whose foci are $(\pm 2, 0)$ and length of latus rectum is $\frac{10}{3}$.
- 10. Find the equation of ellipse with eccentricity $\frac{3}{4}$, centre at origin, foci on y-axis and passing through point (6, 4).
- 11. Find the equation of hyperbola with centre at origin, transverse axis along x-axis, eccentricity $\sqrt{5}$ and sum of lengths of whose axes is 18.

- 12. Two diameters of a circle are along the lines x y 9 = 0 and x 2y 7 = 0 and area of circle is 154 square units, find its equation.
- 13. Find equation(s) of circle passing through points (1,1), (2,2) and whose radius is 1 unit.
- 14. Find equation of circle concentric with circle $4x^2 + 4y^2 12x 16y 21 = 0$ and of half its area.
- 15. Find the equation of a circle whose centre is at (4, -2) and 3x 4y + 5 = 0 is tangent to circle.

LONG ANSWER TYPE QUESTIONS (6 MARKS)

16. Show that the four points (7,5), (6, -2) (-1,-1) and (0,6) are concyclic. [Concylic points: Four or more points which lie on a circle].

ANSWERS

1.
$$\left(-1, \frac{2}{3}\right), \frac{4}{3}$$

3.
$$x^2 + y^2 + 2x - 2y - 3 = 0$$
 or $(x + 1)^2 + (y - 1)^2 = 5$

5.
$$\frac{9}{2}$$

6.
$$\left(\frac{2}{3}, 0\right), \frac{8}{3}$$

7.
$$\frac{4}{5}$$

9.
$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

10.
$$16x^2 + 7y^2 = 688$$

11.
$$4x^2 - y^2 = 36$$

12.
$$x^2 + y^2 - 22x - 4y + 76 = 0$$

[Hint: Point of intersection of two diameters is the centre]

13.
$$x^2 + y^2 - 2x - 4y + 4 = 0$$
, $x^2 + y^2 - 4x - 2y + 4 = 0$

14.
$$2x^2 + 2y^2 - 6x + 8y + 1 = 0$$

15.
$$x^2 + y^2 - 8x + 4y - 5 = 0$$