Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Conic Section
	Miscellaneous
Q.1)	A rod of length 12 cm moves with its ends always touches the coordinate axis. Determine the equation of the locus of a point P on the rod which is 3 cm from the end in contact with the X - axis.
Sol.1)	$\begin{array}{r} \text { In } \triangle P M A, \sin \theta=\frac{y}{3} \\ \sin ^{2} \theta=\frac{y^{2}}{9} \\ \text { In } \triangle P N B, \cos \theta=\frac{x}{9} \\ \cos ^{2} \theta=\frac{x^{2}}{81} \tag{ii} \end{array}$ Adding (i) \& (ii) $\begin{aligned} & \sin ^{2} \theta+\cos ^{2} \theta=\frac{y^{2}}{9}+\frac{x^{2}}{81}=1 \\ & \Rightarrow \frac{x^{2}}{81}+\frac{y^{2}}{9}=1 \end{aligned}$ clearly this equation represents the equation of the ellipse \therefore locus of point P is an ellipse.
Q.2)	An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Sol.2)	$\text { Let } A D=x$ $\begin{equation*} \therefore A B=2 y \tag{i} \end{equation*}$ And $A C=B C=2 y$ (equilateral triangle) Equation of parabola is $y^{2}=4 a x$ In $\triangle A D C$ Pythagoras : $4 y^{2}=x^{2}+y^{2}$ $\Rightarrow 3 y^{2}=x^{2}$ $\Rightarrow x=\sqrt{3} y$ put in equation (i) We have, $y^{2}=4 a(\sqrt{3} y)$ $\begin{aligned} & y^{2}=4 a \sqrt{3} y \\ & \Rightarrow y=4 a \sqrt{3} \end{aligned}$ Now side of $\triangle A B C=A B=2 y=8 a \sqrt{3}$ ans.
Q.3)	A man running a race course notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m . Find the equation of the paths traced by the man.
Sol.3)	Distance between two foci $=S S^{\prime}=2 a e$ $\begin{aligned} & \Rightarrow 2 a e=8 \\ & \Rightarrow a e=4 \end{aligned}$ Sum of focal distance $=S P+S^{\prime} P=2 a$ $\begin{aligned} & \Rightarrow 2 a=10 \\ & \Rightarrow a=5 \end{aligned}$ Now, $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$ $\begin{aligned} & \Rightarrow a e=\sqrt{a^{2}-b^{2}} \\ & \Rightarrow 4=\sqrt{25-b^{2}} \\ & \Rightarrow 16=25-b^{2} \\ & \Rightarrow b^{2}=9 \end{aligned}$ Equation of ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\Rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \quad$ ans.
Q.4)	An arc is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arc at a point 1.5 m from one end.
Sol.4)	Let the required $=y \mathrm{~m}$ From figure $a=4$ and $b=2$ \therefore equation of ellipse is $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{2^{2}}=1$ $\Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ Now, $A(2.5, y)$ lies on it $\Rightarrow \frac{6.25}{16}+\frac{y^{2}}{4}=1$ $\Rightarrow 6.25+4 y^{2}=16$ $\Rightarrow 4 y^{2}=16-6.25$ $\Rightarrow 4 y^{2}=9.75$ $\Rightarrow y^{2}=\frac{9.75}{4}=2.437$ $\Rightarrow y=\sqrt{2.437}=1.56 m$
Q.5)	Find the area of the riangle formed by the lines joining the vertex of the parabola $x^{2}=$ $12 y$ to the ends of its latus rectum.
Sol.5)	Equation of $x^{2}=12 y$ Compare with $x^{2}=4 a y$ $\Rightarrow 4 a=12$ $\Rightarrow a=3$ \therefore focus is $(0, a)=(0,3)$ $\therefore C D=3$ (altitude of triangle) Now, latus rectum $=4 a=4 \times 3=12$ (Base of triangle) Area of the triangle $\Delta A B C$$\quad=\frac{1}{2} \times 12 \times 3$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$A\left(\frac{5}{2}, 10\right)$ lies on it $\begin{aligned} & \Rightarrow \frac{25}{4}=40 a \\ & \Rightarrow a=\frac{25}{160} \end{aligned}$ Put in equation (i) $\begin{aligned} & \therefore x^{2}=4\left(\frac{25}{160}\right) y \\ & \Rightarrow x^{2}=\frac{25}{40} y \end{aligned}$ Now $B(x, 2)$ lies on it $\Rightarrow B(x, 2)$ lies on it $\begin{aligned} & \Rightarrow x^{2}=\frac{25}{40} \times 2 \\ & \Rightarrow x^{2}=\frac{25}{20}=\frac{5}{4}=1.25 \\ & \Rightarrow x=1.1 \end{aligned}$ $\therefore \text { required width }=2 x=2(1.1)=2.2 \mathrm{~m}$
$>$	SHIFTING PORABOLA
Q.8)	Given equation of parabola $y^{2}-8 y-x+19=0$. Find vertex, focus, axis, directrix, latus rectum.
Sol.8)	Given, $y^{2}-8 y-x+19=0$ $\begin{aligned} & \Rightarrow y^{2}-8 y=x-19 \\ & \Rightarrow(y-4)^{2}-16=x-19 \\ & \Rightarrow(y-4)^{2}=(x-3) \end{aligned}$ Let $y-4=Y$ and $x-3=X$ $\Rightarrow y=Y+4$ and $x=X+3$ \therefore equation becomes $Y^{2}=X$ Comparing this equation with $Y^{2}=4 a X$ We have, $y a=1 \Rightarrow a=\frac{1}{4}$ i) Vertex with respect to new axis $(X, Y)=(0,0)$ vertex with respect to old axis $(x, y)=(3,4)$ ii) focus with respect to new axis $=(a, 0)=\left(\frac{1}{4}, 0\right)$ focus with respect to old axis $=\left(\frac{13}{4}, 4\right)$ iii) directrix with respect to new axis $X=-a$ $\Rightarrow X=-\frac{1}{4}$ directrix with respect to old axis $x=X+3$ $\begin{aligned} & \Rightarrow x=-\frac{1}{4}+3 \\ & \Rightarrow x=\frac{11}{4} \end{aligned}$ iv) Latusrectum $4 a=4 \times \frac{1}{4}=1$ v) Axis with respect new axis $Y=0$ Axis with respect to old axis $y=Y+4$ $\Rightarrow y=0+4=4$
Q.9)	Find vertex, focus, directrix and axis of the parabola $4 y^{2}+12 x-12 y+39=0$.
Sol.9)	$\begin{aligned} & \text { Given, } 4 y^{2}+12 x-12 y+39=0 \\ & \Rightarrow 4 y^{2}-12 y=-12 x-39 \\ & \Rightarrow 4\left(y^{2}-3 y\right)=-12 x-39 \\ & \Rightarrow 4\left[\left(y-\frac{3}{2}\right)^{2}-\frac{9}{4}\right]=-12 x-39 \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & \Rightarrow 4\left(y-\frac{3}{2}\right)^{2}-9=-12 x-39 \\ & \Rightarrow 4\left(y-\frac{3}{2}\right)^{2}=-12 x-30 \\ & \Rightarrow 4\left(y-\frac{3}{2}\right)^{2}=-12\left(x+\frac{5}{2}\right) \\ & \Rightarrow\left(y-\frac{3}{2}\right)^{2}=-3\left(x+\frac{5}{2}\right) \end{aligned}$ Now let $x+\frac{5}{2}=X$ and $y-\frac{3}{2}=Y$ $\therefore x=X-\frac{5}{2}$ and $y=Y+\frac{3}{2}$ \therefore equation becomes $Y^{2}=-3 x$ Comparing this equation with $Y^{2}=-4 a x$ We have $4 a=3 \Rightarrow a=\frac{3}{4}$ i) Vertex with respect to new axis $=(0,0)$ vertex with respect to old axis $=\left(-\frac{5}{2}, \frac{3}{2}\right)$ ii) focus with respect to new axis $=(-a, a)=\left(-\frac{3}{4}, 0\right)$ focus with respect to old axis $=\left(-\frac{3}{4}-\frac{5}{2}, 0+\frac{3}{2}\right)=\left(-\frac{13}{4}, \frac{3}{2}\right)$ iii) directrix with respect to new axis $X=a \Rightarrow \frac{3}{4}$ directrix with respect to $x=X-\frac{5}{2}$ $\Rightarrow x=\frac{3}{4}-\frac{5}{2}=-\frac{7}{4}$ iv) axis with respect to new axis $y=Y+\frac{3}{2}$ $\Rightarrow y=0+\frac{3}{2}=\frac{3}{2}$
$>$	SHIFTING ELLIPSE
Q.10)	Find e, centre, vertices, foci, minor axis, major axis, directrix and latus rectum of the ellipse $25 x^{2}+9 y^{2}-150 x-90 y+225=0$.
Sol.10)	$\begin{aligned} & \text { Given, } 25 x^{2}+9 y^{2}-150 x-90 y+225=0 \\ & \Rightarrow 25 x^{2}-150 x+9 y^{2}-90 y+225=0 \\ & \Rightarrow 25\left[x^{2}-6 x\right]+9\left(y^{2}-10 y\right)+225=0 \\ & \Rightarrow 25\left[(x-3)^{2}-9\right]+9\left[(y-5)^{2}-25\right]+225=0 \\ & \Rightarrow 25(x-3)^{2}-225+9\left((y-5)^{2}-225+225=0\right. \\ & \Rightarrow 25(x-3)^{2}+9(y-5)^{2}=225 \\ & \Rightarrow \frac{25(x-3)^{2}}{225}+\frac{9(y-5)^{2}}{225}=1 \\ & \Rightarrow \frac{(x-3)^{2}}{9}+\frac{(y-5)^{2}}{25}=1 \end{aligned}$ Let $x-3=X$ and $y-5=Y$ $\Rightarrow x=X+3 \text { and } y=Y+5$ \therefore equation becomes $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ Here $a=3$ and $b=5$ After compare the equation with $\frac{X^{2}}{a^{2}}+\frac{Y^{2}}{b^{2}}=0$ i) eccentricity $e=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{9}{25}}$ $e=\frac{4}{5}$ ii) centre with respect to new axis $X, Y=(0,0)$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

