

Q.1)Find the equation of a circle of radius 5 whose centre lies on $X - axis$ and passes throu point (2,3).Sol.1)Let the entre of circle is $A(h, 0)$ Clearly, $AB = radius$ $\Rightarrow AB = 5$ $\Rightarrow \sqrt{(h-2)^2 + 9} = 5$ $\Rightarrow (h-2)^2 + 9 = 25$ $\Rightarrow h^2 - 4h + 4 + 9 = 25$ $\Rightarrow h^2 - 4h - 12 = 0$ $\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6$ and $h = -2$ \therefore coordinates of centre are (6, 0) and (-2, 0) \therefore equations of the required circle are $(x - 6)^2 + (y - 0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0$ ans.B(2, 3)Q.2)Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis.Sol.2) $OA = a$ and $OB = b$ $\Rightarrow OC = \frac{a}{2}$ and $OD = \frac{b}{2}$	
Sol.1) Let the entre of circle is $A(h, 0)$ Clearly, $AB = radius$ $\Rightarrow AB = 5$ $\Rightarrow \sqrt{(h-2)^2 + 9} = 5$ $\Rightarrow (h-2)^2 + 9 = 25$ $\Rightarrow h^2 - 4h + 4 + 9 = 25$ $\Rightarrow h^2 - 4h - 12 = 0$ $\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6$ and $h = -2$ \therefore coordinates of centre are (6, 0) and (-2, 0) \therefore equations of the required circle are $(x - 6)^2 + (y - 0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0$ ans. Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a$ and $OB = b$ (given) $\Rightarrow OC = \frac{a}{2}$ and $OD = \frac{b}{2}$	gh the
Clearly, $AB = radius$ $\Rightarrow AB = 5$ $\Rightarrow \sqrt{(h-2)^2 + 9} = 5$ $\Rightarrow (h-2)^2 + 9 = 25$ $\Rightarrow h^2 - 4h + 4 + 9 = 25$ $\Rightarrow h^2 - 4h - 12 = 0$ $\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6$ and $h = -2$ \therefore coordinates of centre are (6,0) and (-2,0) \therefore equations of the required circle are $(x-6)^2 + (y-0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0$ ans. Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a$ and $OB = b$ (given) $\Rightarrow OC = \frac{a}{2}$ and $OD = \frac{b}{2}$	
$\Rightarrow AB = 5$ $\Rightarrow \sqrt{(h-2)^2 + 9} = 5$ $\Rightarrow (h-2)^2 + 9 = 25$ $\Rightarrow h^2 - 4h + 4 + 9 = 25$ $\Rightarrow h^2 - 4h - 12 = 0$ $\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6,0) \text{ and } (-2,0)$ $\therefore \text{ equations of the required circle are}$ $(x-6)^2 + (y-0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow \sqrt{(h-2)^2 + 9} = 5$ $\Rightarrow (h-2)^2 + 9 = 25$ $\Rightarrow h^2 - 4h + 4 + 9 = 25$ $\Rightarrow h^2 - 4h - 12 = 0$ $\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6,0) \text{ and } (-2,0)$ $\therefore \text{ equations of the required circle are } (x-6)^2 + (y-0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0$ ans. B(2, 3) Q.2)Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis.Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow (h-2)^2 + 9 = 25$ $\Rightarrow h^2 - 4h + 4 + 9 = 25$ $\Rightarrow h^2 - 4h - 12 = 0$ $\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6,0) \text{ and } (-2,0)$ $\therefore \text{ equations of the required circle are}$ $(x-6)^2 + (y-0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b \text{ (given)}$ $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow h^{2} - 4h + 4 + 9 = 25$ $\Rightarrow h^{2} - 4h - 12 = 0$ $\Rightarrow (h - 6)(h + 2) = 0$ $\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6, 0) \text{ and } (-2, 0)$ $\therefore \text{ equations of the required circle are}$ $(x - 6)^{2} + (y - 0)^{2} = 25$ $\Rightarrow x^{2} + y^{2} - 12x + 36 = 25$ $\Rightarrow x^{2} + y^{2} - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow h^{2} - 4h - 12 = 0$ $\Rightarrow (h - 6)(h + 2) = 0$ $\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6, 0) \text{ and } (-2, 0)$ $\therefore \text{ equations of the required circle are}$ $(x - 6)^{2} + (y - 0)^{2} = 25$ $\Rightarrow x^{2} + y^{2} - 12x + 36 = 25$ $\Rightarrow x^{2} + y^{2} - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow (h-6)(h+2) = 0$ $\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6,0) \text{ and } (-2,0)$ $\therefore \text{ equations of the required circle are}$ $(x-6)^2 + (y-0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow h = 6 \text{ and } h = -2$ $\therefore \text{ coordinates of centre are } (6, 0) \text{ and } (-2, 0)$ $\therefore \text{ equations of the required circle are}$ $(x - 6)^2 + (y - 0)^2 = 25$ $\Rightarrow x^2 + y^2 - 12x + 36 = 25$ $\Rightarrow x^2 + y^2 - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\begin{array}{c c} \therefore \text{ coordinates of centre are } (6,0) \text{ and } (-2,0) \\ \therefore \text{ equations of the required circle are} \\ (x-6)^2 + (y-0)^2 = 25 \\ \Rightarrow x^2 + y^2 - 12x + 36 = 25 \\ \Rightarrow x^2 + y^2 - 12x + 11 = 0 \text{ans.} \end{array}$ $\begin{array}{c c} Q.2 \\ \hline \text{Find the equation of the circle which passes through the origin & cuts off intercepts 'a'} \\ \hline \text{on the coordinate axis.} \end{array}$ $\begin{array}{c c} Sol.2 \\ \hline OA = a \text{ and } OB = b \\ \Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2} \end{array}$ $(given)$	
$\begin{array}{c} \therefore \text{ equations of the required circle are} \\ (x-6)^2 + (y-0)^2 = 25 \\ \Rightarrow x^2 + y^2 - 12x + 36 = 25 \\ \Rightarrow x^2 + y^2 - 12x + 11 = 0 \text{ans.} \end{array}$ $\begin{array}{c} \text{Q.2)} \qquad \text{Find the equation of the circle which passes through the origin \& cuts off intercepts 'a' \\ \text{on the coordinate axis.} \end{array}$ $\begin{array}{c} \text{Sol.2)} \qquad OA = a \text{ and } OB = b \qquad (given) \\ \Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2} \end{array}$	
$\Rightarrow x^{2} + y^{2} - 12x + 36 = 25$ $\Rightarrow x^{2} + y^{2} - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\Rightarrow x^{2} + y^{2} - 12x + 11 = 0 \text{ ans.}$ Q.2) Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis. Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
Q.2)Find the equation of the circle which passes through the origin & cuts off intercepts 'a' on the coordinate axis.Sol.2) $OA = a$ and $OB = b$ $\Rightarrow OC = \frac{a}{2}$ and $OD = \frac{b}{2}$	
on the coordinate axis.Sol.2) $OA = a$ and $OB = b$ (given) $\Rightarrow OC = \frac{a}{2}$ and $OD = \frac{b}{2}$	
Sol.2) $OA = a \text{ and } OB = b$ (given) $\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	and b'
$\Rightarrow OC = \frac{a}{2} \text{ and } OD = \frac{b}{2}$	
$\therefore h = \frac{a}{2}$ and $k = \frac{b}{2}$	
\therefore centre of circle is $\left(\frac{a}{2}, \frac{b}{2}\right)$	
Now, $OE = r(radius)$	
$\Rightarrow \sqrt{\frac{a^2}{4} + \frac{b^2}{4}} = r \qquad \qquad \text{(By Pythagoras)} \qquad \qquad$	
$\Rightarrow r^2 = \frac{a^2}{4} + \frac{b^2}{4}$	
	→ x
Now, equation of circle is given by $\Rightarrow (x - h)^2 + (y - k)^2 = r^2$	
$\Rightarrow (x - h)^{2} + (y - k)^{2} = r^{2}$	
$\Rightarrow x^{2} + \frac{a^{2}}{4} - ax + y^{2} + \frac{b^{2}}{4} - by = \frac{a^{2}}{4} + \frac{b^{2}}{4}$	
$\Rightarrow x^2 + y^2 - ax - by = 0$ is the required equation of circle. ans.	
Q.3) Find the equation of the circle which passes through the points $(1, -2)$ and $(4, -3)$ and	has its
centre on the line $3x + 4y = 7$.Sol.3)Let the equation of circle is	
$\int \frac{d^2}{(x-h)^2} + (y-k)^2 = r^2$	
$\begin{array}{c} (x - h) + (y - h) = r \\ A(1, -2) \text{ lies on it} \end{array}$	
$\therefore (1-h)^2 - (-2-k)^2 = r^2$	
$\Rightarrow 1 + h^2 - 2h + 4 + k^2 + 4k = r^2$	
$\Rightarrow h^2 + k^2 - 2h + 4k + 5 = r^2$ (i)	
Now, $B(4, -3)$ lies on circle	

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

·	
	$\therefore (4-h)^2 + (-3-k)^2 = r^2$
	$\Rightarrow h^2 + 16 - 8h + 9 + k^2 + 6k = r^2$
	$\Rightarrow h^2 + k^2 - 8h + 6k + 25 - r^2$ (ii)
	Also $C(h, k)$ lies on line $3x + 4y = 7$
	$\Rightarrow 3h + 4k = 7$
	Equation (i) and (ii)
	$h^{2} + k^{2} - 2h + 4k + 5 = h^{2} + k^{2} - 8h + 6k + 25$
	h = 2h = 20
	$\Rightarrow 6h - 2k = 20$ Or $3h - k = 10$ (iv)
	Now solving (iii) & (iv)
	We get, $h = \frac{47}{15}$ and $k = \frac{-3}{5}$
	$\therefore \text{ centre is } \left(\frac{47}{15}, \frac{-3}{5}\right)$
	Put in equation (i)
	We get $r^2 = \frac{1465}{225}$
	∴ equation of circle is
	$\left(x - \frac{47}{15}\right)^2 + \left(y + \frac{3}{k}\right)^2$ ans.
Q.4)	Find the equation of the circle which passes through the point $(3,7)$, $(5,5)$ and has its centre on
	the line $x - 4y = 1$.
Sol.4)	Let us consider the equation of circle in general form
	$x^{2} + y^{2} + 2gx + 2fy + c = 0$ (1)
	Where $(-g, -f)$ are the center of circle.
	So put $(x, y) = (-g, -f)$ in equation of line we will get $4f - g = 1$.
	Then put(3,7) & (5,5) in (1) equation
	We will get
	58 + 6a + 14f + c = 0 (a)
	$58 + 6g + 14f + c = 0 \qquad \dots (a) 50 + 10g + 10f + c = 0 \qquad \dots (b)$
	Apply (a)- (b)
	We get, $4f - 4g = -8$ & already we have $4f - g = 1$
	On solving both we will get $g = 3$, $f = 1 \& c = -90$
	Hence equation of circle is $y^2 + y^2 + y^2 = 0$
0.5	$x^2 + y^2 + 6x + 2y - 90 = 0$ ans.
Q.5)	Find the centre and radius of the following equation $2^{2} + 2^{2} +$
	i) $x^2 + y^2 - 4x + 6y = 12$ ii) $2x^2 + 2y^2 - 6y = 2$ ii) $x^2 + y^2 - 4x + 6y = 12$
Sol.5)	
	(we have to control in to standard form)
	$x^2 - 4x + y^2 + 6y = 12$
	$\Rightarrow (x-2)^2 - 4 + (y+3)^2 - 9 = 12$
	$\Rightarrow (x-2)^2 + (y+3)^2 = 25$
	Compare with $(x - h)^2 + (y - k)^2 = r^2$
	We have, $h = k = -3$ and $r = 5$
	\therefore centre $(2, -3)$ and radius = 5
	ii) $2x^2 + 2y^2 - 6y = 2$
	$\Rightarrow x^2 + y^2 - 3y = 1$
<u>I</u>	

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

	$x^2 + y^2 - 3y = 1$
	$\Rightarrow x^{2} + \left(y - \frac{3}{2}\right)^{2} - \frac{9}{4} = 1$
	$\Rightarrow x^2 + \left(y - \frac{3}{2}\right)^2 = \frac{13}{4}$
	Here centre is $\left(0, \frac{3}{2}\right)$ and $radius = \frac{\sqrt{13}}{2}$ ans.
Q.6)	Find the equation of the circle which passes through the points $(5, -8)$, $(2, -9)$ and $(2, 1)$.
Sol.6)	Let the equation of circle is
	$(x-h)^2 + (y-k)^2 = r^2$
	(5, -8) lies on circle
	$\therefore (5-5)^2 + (-8-k)^2 = r^2$
	$\Rightarrow h^{2} + 25 - 10h + 64 + k^{2} + 16k = r^{2}$
	$\Rightarrow h^{2} + k^{2} - 10h + 16k + 89 = r^{2} \qquad \dots \dots \dots (i)$
	(2, -9) lies on circle
	$\therefore (2-h)^2 + (-9-k)^2 = r^2$
	$\Rightarrow 4 + h^{2} - 4h + 81 + k^{2} + 18k$ $\Rightarrow h^{2} + k^{2} - 4h + 18k + 85 = r^{2} \qquad \dots \dots \dots \dots \dots \dots (ii)$
	(2,1) lies on circle $\therefore (2-h)^2 + (1-k)^2 = r^2$
	$\therefore (2-h)^{2} + (1-k)^{2} = r^{2}$ $\Rightarrow 4 + h^{2} - 4h + 1 + k^{2} - 2k = r^{2}$
	$\Rightarrow 4 + h^{2} - 4h + 1 + k^{2} - 2k = r^{2}$ $\Rightarrow h^{2} + k^{2} - 4h - 2k + 5 = r^{2} \qquad \dots $
	Equating eq. (i) and (ii) $h^2 + h^2 = 10h + 10h + 90 = h^2 + h^2 = 4h + 10h + 95$
0.7)	$h^{2} + k^{2} - 10h + 16k + 89 = h^{2} + k^{2} - 4h + 18k + 85$ ans. Find all data of the following parabolas:
Q.7)	i) $y^2 = -12x$ ii) $16y = -4x^2$
Sol.7)	i) $y^2 = -12x$ ii) $10y = -4x$
501.77	Compare with $y^2 = -4ax$
	We have, $4a = 12$
	$\Rightarrow 6h + 2k = 4$
	Or $3h + k = 2$
	Equating equation (i) and (ii)
	$\Rightarrow h^{2} + k^{2} - 4h + 18k + 85 = h^{2} + k^{2} - 4h - 2k + 5$
	$\Rightarrow 20k = -80$
	$\Rightarrow k = -4$, put in eq. (iv)
	$\Rightarrow 3h - 4 = 2$
	$\Rightarrow 3h = 6$
	$\Rightarrow h = 2$
	\therefore centre is $(2, -4)$, put in equation (i)
	$\Rightarrow 4 + 16 - 20 - 64 + 89 = r^2$
	$\Rightarrow 25 = r^2$
	$\Rightarrow r = 5$
	: equating circle is $(x - 2)^2 + (y + 4)^2 = 25$
	$\Rightarrow x^2 + y^2 - 4x + 8y - 5 = 0 \qquad \text{ans.}$
Q.8)	Find the equation of parabola whose focus = $(6,0)$ and directrix $x = -6$.
Sol.8)	Since the focus (6,0) lies on $X - axis$ and directrix $x = -6$ is on the left side of origin.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

<u>StudiesToday</u>....

	\therefore parabola must be of the form $y^2 = 4ax$
	Now compare focus with $(a, 0)$ and directrix with $x = -a$
	We get $a = 6$
	Put value of a in equation $y^2 = 4ax$
Q.9)	We get $y^2 = 4(6x) \Rightarrow y^2 = 24x$ ans. Find the equation of parabola with vertex (0,0) and passing through (5,2) and symmetric w.r.t
Q.9)	y-axis.
Sol.9)	Since parabola is symmetric w.r.t y-axis
501.57	\therefore it may be either $x^2 = 4ay$ or $x^2 = -4ay$ but it passes through the point (5,2) which is in
	first quadrant
	\therefore parabola must be of the form $x^2 = 4ay$
	Now, (5,2) lies on it
	$\therefore 25 = 4a(2)$
	$\Rightarrow 25 = 8a$
	$\Rightarrow a = \frac{25}{8}$
	$\therefore x^2 = 4\left(\frac{25}{8}\right)y$
	$\Rightarrow x^2 = \frac{25}{2}y$ ans.
Q.10)	Find vertex, foci, e, LR, Major axis and Minor axis $36x^2 + 4y^2 = 144$.
Sol.10)	We have, $36x^2 + 4y^2 = 144$
	$\Rightarrow \frac{36}{144}x^2 + \frac{4y^2}{144} = 1$
	$\Rightarrow \frac{x^2}{4} + \frac{y^2}{36} = 1$
	$\Rightarrow \frac{x^2}{2^2} + \frac{y^2}{6^2} = 1$
	Comparing with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
	a = 2 and $b = 6$ here $b > a$ (2 nd ellipse)
	i) $e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{4}{36}} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$
	ii) Vertices $(0, \pm be) = (0, \pm 6)$
	iii) Foci = $(0, \pm be) = (0, \pm 4\sqrt{2})$
	iv) LR $=\frac{2a^2}{b}=\frac{2\times 4}{6}=\frac{4}{3}$
	v) Major axis = $2b = 12$
	vi) Minor axis $= 2a = 4$ ans.
\checkmark	SHIFTING HYPERBOLA
Q.11)	Find centre, e, foci, vertices, LR, directrix, length of the axis (transverse & conjugate axis) of the
Q.11)	hyperbola $9x^2 - 16y^2 - 18x + 32y - 151 = 0.$
Sol.11)	We have, $9x^2 - 16y^2 - 18x + 32y - 151 = 0$
55	$\Rightarrow 9x^2 - 18x - 16y^2 + 32y - 151 = 0$
	$\Rightarrow 9(x^2 - 2x) - 16(y^2 - 2y) - 151 = 0$
	$\Rightarrow 9[(x-1)^2 - 1] - 16[(y-1)^2 - 1] - 151 = 0$
	$\Rightarrow 9(x-1)^2 - 9 - 16(y-1)^2 + 16 - 151 = 0$
	$\Rightarrow 9(x-1)^2 - 16(y-1)^2 = 144$
	$\Rightarrow 9(x-1)^2 - 16(y-1)^2 = 144$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

StudiesToday.com

 $\Rightarrow \frac{(x-1)^2}{16} - \frac{(y-1)^2}{9} = 1$ Let x - 1 = X and y - 1 = Y $\therefore x = X + 1$ and y = Y + 1 \therefore equation becomes $\frac{X^2}{16} - \frac{Y^2}{9} = 1$ Clearly this is 1^{st} (transverse hyperbola) with a = 4 and b = 3i) eccentricity $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{9}{16}}$ $e = \sqrt{\frac{25}{10}} = \frac{5}{4}$ ii) centre with respect to new axis = (0,0)centre with respect to old axis (0 + 1, 0 + 1) = (1, 1)iii) vertices with respect to new axis = $(\pm a, 0) = (\pm 4, 0)$ vertices with respect to old axis = (4 + 1, 0 + 1) and (-4 + 1, 0 + 1)= (5,1) and (-3+1)iv) foci with respect to new axis $(\pm ae, 0) = (\pm 5, 0)$ foci with respect to old axis = (5 + 1, 0 + 1) and (-5 + 1, 0 + 1)= (6,1) and (-4,1)v) LR = $\frac{2b^2}{a} = 2\left(\frac{9}{4}\right) = \frac{9}{2}$ V) LR = $\frac{1}{a} = 2\left(\frac{1}{4}\right) - \frac{1}{2}$ vi) directrix with respect to new axis $X = \pm \frac{a}{e}$ $\Rightarrow X = \pm \frac{16}{5}$ Directrix with respect to old axis x = X + 1 $\Rightarrow x = \frac{16}{5} + 1$ and $x = \frac{-16}{5} + 1$ $\Rightarrow x = \frac{21}{5}$ and $x = \frac{-11}{5}$ vii) length of transverse axis 2a = 8viii) length of conjugate axis 2b = 6. MANN

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.