Downloaded from www.studiestoday.com

StudiesToday

	Class 11 Conic Sections
Q.1)	Find the equation of a circle of radius 5 whose centre lies on X - axis and passes through the point (2,3).
Sol.1)	Let the entre of circle is $A(h, 0)$ Clearly, $A B=$ radius $\begin{aligned} & \Rightarrow A B=5 \\ & \Rightarrow \sqrt{(h-2)^{2}+9}=5 \\ & \Rightarrow(h-2)^{2}+9=25 \\ & \Rightarrow h^{2}-4 h+4+9=25 \\ & \Rightarrow h^{2}-4 h-12=0 \\ & \Rightarrow(h-6)(h+2)=0 \\ & \Rightarrow h=6 \text { and } h=-2 \end{aligned}$ \therefore coordinates of centre are $(6,0)$ and $(-2,0)$ \therefore equations of the required circle are $\begin{aligned} & (x-6)^{2}+(y-0)^{2}=25 \\ & \Rightarrow x^{2}++y^{2}-12 x+36=25 \end{aligned}$ $\Rightarrow x^{2}+y^{2}-12 x+11=0 \quad \text { ans }$
Q.2)	Find the equation of the circle which passes through the origin \& cuts off intercepts ' a ' and ' b ' on the coordinate axis.
Sol.2)	$O A=a$ and $O B=b$ (given) $\Rightarrow O C=\frac{a}{2}$ and $O D=\frac{b}{2}$ $\therefore h=\frac{a}{2}$ and $k=\frac{b}{2}$ \therefore centre of circle is $\left(\frac{a}{2}, \frac{b}{2}\right)$ Now, $O E=r$ (radius) $\begin{aligned} & \Rightarrow \sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}=r \\ & \Rightarrow r^{2}=\frac{a^{2}}{4}+\frac{b^{2}}{4} \end{aligned}$ Now, equation of circle is given by $\begin{aligned} & \Rightarrow(x-h)^{2}+(y-k)^{2}=r^{2} \\ & \Rightarrow\left(x-\frac{a}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=r^{2} \\ & \Rightarrow x^{2}+\frac{a^{2}}{4}-a x+y^{2}+\frac{b^{2}}{4}-b y=\frac{a^{2}}{4}+\frac{b^{2}}{4} \end{aligned}$ $\Rightarrow x^{2}+y^{2}-a x-b y=0 \text { is the required equation of circle. ans. }$
Q.3)	Find the equation of the circle which passes through the points $(1,-2)$ and $(4,-3)$ and has its centre on the line $3 x+4 y=7$.
Sol.3)	Let the equation of circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$ $A(1,-2)$ lies on it $\begin{align*} & \therefore(1-h)^{2}-(-2-k)^{2}=r^{2} \\ & \Rightarrow 1+h^{2}-2 h+4+k^{2}+4 k=r^{2} \\ & \Rightarrow h^{2}+k^{2}-2 h+4 k+5=r^{2} \tag{i} \end{align*}$ Now, $B(4,-3)$ lies on circle

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{align*} & \therefore(4-h)^{2}+(-3-k)^{2}=r^{2} \\ & \Rightarrow h^{2}+16-8 h+9+k^{2}+6 k=r^{2} \\ & \Rightarrow h^{2}+k^{2}-8 h+6 k+25-r^{2} \tag{ii} \end{align*}$ Also $C(h, k)$ lies on line $3 x+4 y=7$ $\begin{equation*} \Rightarrow 3 h+4 k=7 \tag{iii} \end{equation*}$ Equation (i) and (ii) $\begin{align*} & h^{2}+k^{2}-2 h+4 k+5=h^{2}+k^{2}-8 h+6 k+25 \\ & \Rightarrow 6 h-2 k=20 \\ & \text { Or } 3 h-k=10 \tag{iv} \end{align*}$ Now solving (iii) \& (iv) We get, $h=\frac{47}{15}$ and $k=\frac{-3}{5}$ \therefore centre is $\left(\frac{47}{15}, \frac{-3}{5}\right)$ Put in equation (i) We get $r^{2}=\frac{1465}{225}$ \therefore equation of circle is $\left(x-\frac{47}{15}\right)^{2}+\left(y+\frac{3}{k}\right)^{2} \quad \text { ans. }$
Q.4)	Find the equation of the circle which passes through the point $(3,7),(5,5)$ and has its centre on the line $x-4 y=1$.
Sol.4)	Let us consider the equation of circle in general form $x^{2}+y^{2}+2 g x+2 f y+c=0$.......(1) Where $(-g,-f)$ are the center of circle. So put $(x, y)=(-g,-f)$ in equation of line we will get $4 f-g=1$. Then put $(3,7) \&(5,5)$ in (1) equation We will get $\begin{align*} & 58+6 g+14 f+c=0 \tag{a}\\ & 50+10 g+10 f+c=0 \end{align*}$ Apply (a)- (b) We get, $4 f-4 g=-8 \&$ already we have $4 f-g=1$ On solving both we will get $g=3, f=1 \& c=-90$ Hence equation of circle is $x^{2}+y^{2}+6 x+2 y-90=0 \quad \text { ans. }$
Q.5)	Find the centre and radius of the following equation i) $x^{2}+y^{2}-4 x+6 y=12$ ii) $2 x^{2}+2 y^{2}-6 y=2$
Sol.5)	i) $x^{2}+y^{2}-4 x+6 y=12$ (we have to control in to standard form) $\begin{aligned} & x^{2}-4 x+y^{2}+6 y=12 \\ & \Rightarrow(x-2)^{2}-4+(y+3)^{2}-9=12 \\ & \Rightarrow(x-2)^{2}+(y+3)^{2}=25 \end{aligned}$ Compare with $(x-h)^{2}+(y-k)^{2}=r^{2}$ We have, $h=; k=-3$ and $r=5$ \therefore centre $(2,-3)$ and radius $=5$ ii) $2 x^{2}+2 y^{2}-6 y=2$ $\Rightarrow x^{2}+y^{2}-3 y=1$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	$\begin{aligned} & x^{2}+y^{2}-3 y=1 \\ & \Rightarrow x^{2}+\left(y-\frac{3}{2}\right)^{2}-\frac{9}{4}=1 \\ & \Rightarrow x^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{13}{4} \end{aligned}$ Here centre is $\left(0, \frac{3}{2}\right)$ and radius $=\frac{\sqrt{13}}{2}$
Q.6)	Find the equation of the circle which passes through the points ($5,-8$), (2, -9) and (2,1).
Sol.6)	Let the equation of circle is $(x-h)^{2}+(y-k)^{2}=r^{2}$ $(5,-8)$ lies on circle $\begin{align*} & \therefore(5-5)^{2}+(-8-k)^{2}=r^{2} \\ & \Rightarrow h^{2}+25-10 h+64+k^{2}+16 k=r^{2} \\ & \Rightarrow h^{2}+k^{2}-10 h+16 k+89=r^{2} \tag{i} \end{align*}$ $(2,-9)$ lies on circle $\begin{align*} & \therefore(2-h)^{2}+(-9-k)^{2}=r^{2} \\ & \Rightarrow 4+h^{2}-4 h+81+k^{2}+18 k \\ & \Rightarrow h^{2}+k^{2}-4 h+18 k+85=r^{2} \tag{ii} \end{align*}$ $(2,1)$ lies on circle $\begin{align*} & \therefore(2-h)^{2}+(1-k)^{2}=r^{2} \\ & \Rightarrow 4+h^{2}-4 h+1+k^{2}-2 k=r^{2} \\ & \Rightarrow h^{2}+k^{2}-4 h-2 k+5=r^{2} \tag{iii} \end{align*}$ Equating eq. (i) and (ii) $h^{2}+k^{2}-10 h+16 k+89=h^{2}+k^{2}-4 h+18 k+85$ ans.
Q.7)	Find all data of the following parabolas: i) $y^{2}=-12 x$ ii) $16 y=-4 x^{2}$
Sol.7)	i) $y^{2}=-12 x$ Compare with $y^{2}=-4 a x$ We have, $4 a=12$ $\Rightarrow 6 \mathrm{~h}+2 \mathrm{k}=4$ Or $3 h+k=2$ Equating equation (i) and (ii) $\begin{aligned} & \Rightarrow h^{2}+k^{2}-4 h+18 k+85=h^{2}+k^{2}-4 h-2 k+5 \\ & \Rightarrow 20 k=-80 \\ & \Rightarrow k=-4, \text { put in eq. (iv) } \\ & \Rightarrow 3 h-4=2 \\ & \Rightarrow 3 \mathrm{~h}=6 \\ & \Rightarrow h=2 \\ & \therefore \text { centre is }(2,-4), \text { put in equation (i) } \\ & \Rightarrow 4+16-20-64+89=r^{2} \\ & \Rightarrow 25=r^{2} \\ & \Rightarrow r=5 \\ & \therefore \text { equating circle is }(x-2)^{2}+(y+4)^{2}=25 \\ & \Rightarrow x^{2}+y^{2}-4 x+8 y-5=0 \quad \text { ans. } \end{aligned}$
Q.8)	Find the equation of parabola whose focus $=(6,0)$ and directrix $x=-6$.
Sol.8)	Since the focus (6,0) lies on X - axis and directrix $x=-6$ is on the left side of origin.

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

	\therefore parabola must be of the form $y^{2}=4 a x$ Now compare focus with ($a, 0$) and directrix with $x=-a$ We get $a=6$ Put value of a in equation $y^{2}=4 a x$ We get $y^{2}=4(6 x) \Rightarrow y^{2}=24 x \quad$ ans.
Q.9)	Find the equation of parabola with vertex (0,0) and passing through (5,2) and symmetric w.r.t y-axis.
Sol.9)	Since parabola is symmetric w.r.t y-axis \therefore it may be either $x^{2}=4 a y$ or $x^{2}=-4 a y$ but it passes through the point $(5,2)$ which is in first quadrant \therefore parabola must be of the form $x^{2}=4 a y$ Now, $(5,2)$ lies on it $\begin{aligned} & \therefore 25=4 a(2) \\ & \Rightarrow 25=8 a \\ & \Rightarrow a=\frac{25}{8} \\ & \therefore x^{2}=4\left(\frac{25}{8}\right) y \\ & \Rightarrow x^{2}=\frac{25}{2} y \quad \text { ans. } \end{aligned}$
Q.10)	Find vertex, foci, e, LR, Major axis and Minor axis $36 x^{2}+4 y^{2}=144$.
Sol.10)	We have, $36 x^{2}+4 y^{2}=144$ $\begin{aligned} & \Rightarrow \frac{36}{14 x} x^{2}+\frac{4 y^{2}}{144}=1 \\ & \Rightarrow \frac{x^{2}}{4}+\frac{y^{2}}{36}=1 \\ & \Rightarrow \frac{x^{2}}{2^{2}}+\frac{y^{2}}{6^{2}}=1 \end{aligned}$ Comparing with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ $a=2$ and $b=6$ here $b>a$ ($2^{\text {nd }}$ ellipse) i) $e=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{4}{36}}=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}}=\frac{2 \sqrt{2}}{3}$ ii) Vertices $(0, \pm b e)=(0, \pm 6)$ iii) Foci $=(0, \pm b e)=(0, \pm 4 \sqrt{2})$ iv) $L R=\frac{2 a^{2}}{b}=\frac{2 \times 4}{6}=\frac{4}{3}$ v) Major axis $=2 b=12$ vi) Minor axis $=2 a=4$ ans.
$>$	SHIFTING HYPERBOLA
Q.11)	Find centre, e, foci, vertices, LR, directrix, length of the axis (transverse \& conjugate axis) of the hyperbola $9 x^{2}-16 y^{2}-18 x+32 y-151=0$.
Sol.11)	$\begin{aligned} & \text { We have, } 9 x^{2}-16 y^{2}-18 x+32 y-151=0 \\ & \Rightarrow 9 x^{2}-18 x-16 y^{2}+32 y-151=0 \\ & \Rightarrow 9\left(x^{2}-2 x\right)-16\left(y^{2}-2 y\right)-151=0 \\ & \Rightarrow 9\left[(x-1)^{2}-1\right]-16\left[(y-1)^{2}-1\right]-151=0 \\ & \Rightarrow 9(x-1)^{2}-9-16(y-1)^{2}+16-151=0 \\ & \Rightarrow 9(x-1)^{2}-16(y-1)^{2}=144 \end{aligned}$

Copyright © www.studiestoday.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission.

Downloaded from www.studiestoday.com

StudiesToday

